
Electric Vehicle Routing
MICHAEL FORBES AND JASMINE CRAIG

AMSI OPTIMISE 2017

The problem
Assign electric buses to a fixed timetable

Minimise cost of owning buses, cost of deadheading
and cost of recharging

Subject to:
◦ Each timetabled trip is operated by exactly one bus

◦ Each bus returns to its starting depot

◦ Limit on buses at each depot

◦ No bus exceeds its range before recharging

The Vehicle Scheduling Problem for Fleets with Alternative-Fuel Vehicles
Adler and Mirchandani, Transportation Science, 2017

Why is this important?
Many cities are switching to electric buses.

But (and perhaps more interestingly)

It’s a recent example of a difficult optimisation problem (an IP) which wasn’t
solved well.

The MIP modelling tool kit
Embedded (multicommodity) networks

Composite variables (a priori column generation)

Lazy constraints

Benders Decomposition

Inventory constraints

Discretised time constraints

…

Modelling environment

Discretised time constraints
Tasks operate in at most one discretised time period

Given dependencies between tasks

E.g. mine planning and block dependencies

The “obvious” model:

𝑋𝑖𝑡 = ቊ
1, 𝑖𝑓 𝑖 𝑖𝑠 𝑑𝑜𝑛𝑒 𝑖𝑛 𝑝𝑒𝑟𝑖𝑜𝑑 𝑡
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

σ𝑡𝑋𝑖𝑡 ≤ 1 ∀𝑖

𝑋𝑖𝑡 ≤ σ𝑡′≤𝑡𝑋𝑗𝑡′ ∀ 𝑖, 𝑗 𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑖𝑒𝑠

Better time constraints

𝑌𝑖𝑡 = ቊ
1, 𝑖𝑓 𝑖 𝑖𝑠 𝑑𝑜𝑛𝑒 𝒃𝒚 𝑝𝑒𝑟𝑖𝑜𝑑 𝑡
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑌𝑖𝑡 ≤ 𝑌𝑖 𝑡+1 ∀𝑖, 𝑡 < 𝑇𝑀𝑎𝑥

𝑌𝑖𝑡 ≤ 𝑌𝑖𝑗 ∀ 𝑖, 𝑗 𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑖𝑒𝑠

Bus Scheduling
Easy to optimise if no range limit
◦ Binary multi-commodity network flow

◦ “An exact algorithm for multiple depot bus scheduling”
Forbes, Holt, Watts. European Journal of Operational Research, 1994.

With range limit:
◦ Primary objective is minimising number of buses

◦ Secondary is minimising dead heading and recharging time

◦ Adler and Mirchandani propose Branch and Price and a custom heuristic

Can we do better?

A priori generation of fragments
Variables represent:
◦ a collection of trips that can be done without recharging

◦ moving between specific recharge locations

◦ with a bus originating from a specific depot.

Starts at a recharge location (depot) and ends at a recharge location (depot)

Constraints:
◦ Each trip covered exactly once

◦ Inventory constraints (by depot) at each recharge location

Pure network flow problems linked by trip coverage constraints

One inventory constraint for each minute (with waiting arcs)

In practice can restrict these to every transition from a departure to an arrival
𝑁𝑡 = 𝑁𝑡− + 𝐴𝑟𝑟𝑖𝑣𝑎𝑙𝑠 − 𝐷𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒𝑠

Sample results D=2, F=4

Method N 𝑻𝒈𝒆𝒏 𝑻𝒃𝒖𝒊𝒍𝒅 𝑻𝒔𝒐𝒍𝒗𝒆 Vars B&B Nodes Obj

Exact 50 0.5 1.9 1.4 141794 0 132590

Approx 50 0.3 0.3 0.2 20732 0 133523

Exact 100 3.9 9.7 18.2 704565 0 264490

Approx 100 0.9 1.4 3.5 90725 0 266550

Exact 200 17.6 20.6 39.9 1693819 45 471510

Approx 200 4.5 4.0 4.6 283856 0 477510

Approx 300 51.5 41.3 785.6 2623133 12387

Approx 400 220.3 151.4 2228.2 9124831 11172

Can we go even bigger?
Nodes:
◦ Depot start and depot end

◦ Recharge locations at epochs

◦ Ends of trips, replicated for (discretised) charge used by end of trip
(e.g. every 10 minutes of range)

Arcs:
◦ Only connect trips up to a maximum gap (as for approx. algorithm above)

◦ Connect optimistically (i.e. round down the charge used)

◦ Replicate arcs for different origin depots

Use lazy constraints to eliminate fragments where rounding down has let
through an illegality.

The real problem
There are a lot of papers (and PhDs) published using heuristics where a good
MIP model solves to (near) optimality:
◦ Operating room scheduling, 2016

◦ The budget-constrained dynamic uncapacitated facility location–network design
problem, 2013

◦ Crane sequencing with yard congestion, 2014

◦ Twin yard cranes, 2014

◦ Resource allocation problem in hospitals, 2012

◦ Truck scheduling in the postal industry, 2017

How do we avoid this?

Yesterday’s Email
Transportation Science Articles in Advance
◦ Column Generation for Outbound Baggage Handling at Airports

◦ Branch-and-Price-and-Cut for the Active-Passive Vehicle-Routing Problem
“Computational experiments show that the proposed algorithm delivers improved
bounds and solutions for a number of APVRP benchmark instances. It is able to solve
instances with up to 76 tasks, four active, and eight passive vehicles to optimality
within two hours of CPU time.”

