Convex Feasibility via Monotropic Programming

R. S. Burachik

*School of Information Technology and Mathematical Sciences
University of South Australia

AMSI- Optimise
Thursday 29 June, 2017

Monash University
Joint work with

Victoria Martín Márquez

University of Sevilla, Spain
Outline

1. Problem Formulation
2. Monotropic Programming
3. Preliminaries
4. Facts
5. Analysis of Consistency

Burachik
Convex Feasibility Problem via Monotropic Programming
Outline

1. Problem Formulation
2. Monotropic Programming
3. Preliminaries
4. Facts
5. Analysis of Consistency
Outline

1. Problem Formulation
2. Monotropic Programming
3. Preliminaries
4. Facts
5. Analysis of Consistency
The problem formulation

Let H be a Hilbert space and let C_n, $n = 1, \ldots, m$ be convex closed subsets of H. The convex feasibility problem is to find some point

$$x \in \bigcap_{n=1}^{m} C_n \quad (CFP)$$

when this intersection is non-empty.
The problem formulation

Let H be a Hilbert space and let $C_n, n = 1, ..., m$ be convex closed subsets of H. The **convex feasibility problem** is to find some point

$$x \in \bigcap_{n=1}^{m} C_n \quad (CFP)$$

when this intersection is non-empty.
The problem formulation

Let H be a Hilbert space and let C_n, $n = 1, ..., m$ be convex closed subsets of H. The **convex feasibility problem** is to find some point

$$x \in \bigcap_{n=1}^{m} C_n \quad (CFP)$$

when this intersection is non-empty.
The *CFP* has wide ranging applications:

- medical imaging, computerised tomography, signal processing.
- Partial differential equations (Dirichlet problem), complex analysis (Bergman kernels, conformal mappings);
- Subgradient algorithms with application in solution of convex inequalities, minimization of convex nonsmooth functions.
The *CFP* has wide ranging applications:

- medical imaging, computerised tomography, signal processing.
- Partial differential equations (Dirichlet problem), complex analysis (Bergman kernels, conformal mappings);
- Subgradient algorithms with application in solution of convex inequalities, minimization of convex nonsmooth functions.
The *CFP* has wide ranging applications:

- medical imaging, computerised tomography, signal processing.
- Partial differential equations (Dirichlet problem), complex analysis (Bergman kernels, conformal mappings);
- Subgradient algorithms with application in solution of convex inequalities, minimization of convex nonsmooth functions.
Fact (Bauschke-Borwein, 1996)

- CFP equivalent to problem involving only two convex and closed sets in $H^m = H \times \ldots \times H$ consisting of m copies of H, with the additional advantage that one of these sets is a linear subspace.
- Hence, from now on we assume that we are dealing with only two (possibly disjoint) closed convex sets.
Fact (Bauschke-Borwein, 1996)

- CFP equivalent to problem involving only two convex and closed sets in $H^m = H \times \ldots \times H$ consisting of m copies of H, with the additional advantage that one of these sets is a linear subspace.

- Hence, from now on we assume that we are dealing with only two (possibly disjoint) closed convex sets.
Fact (Bauschke-Borwein, 1996)

- CFP equivalent to problem involving only two convex and closed sets in $H^m = H \times \ldots \times H$ consisting of m copies of H, with the additional advantage that one of these sets is a linear subspace.
- Hence, from now on we assume that we are dealing with only two (possibly disjoint) closed convex sets.
Fact (Bauschke-Borwein, 1996)

- CFP equivalent to problem involving only two convex and closed sets in \(H^m = H \times \ldots \times H \) consisting of \(m \) copies of \(H \), with the additional advantage that one of these sets is a linear subspace.
- Hence, from now on we assume that we are dealing with only two (possibly disjoint) closed convex sets.
Fact (Bauschke-Borwein, 1996)

- CFP equivalent to problem involving only two convex and closed sets in $H^m = H \times \ldots \times H$ consisting of m copies of H, with the additional advantage that one of these sets is a linear subspace.

- Hence, from now on we assume that we are dealing with only two (possibly disjoint) closed convex sets.

\[
\begin{align*}
\min & \sum_{i=1}^{m} f_i(x_i) \\
\text{subject to } & (x_1, \ldots, x_m) \in S,
\end{align*}
\]

- \(f_i : H_i \to \mathbb{R} \cup \{+\infty\} \) proper, convex,
- \(S \subseteq \prod_{i=1}^{m} H_i \) is a closed linear subspace

\((P)\) will be our primal model.
\((P)\) has a very symmetric dual problem:
Monotropic Model (Minty, 1960)

\[
\begin{align*}
\min & \sum_{i=1}^{m} f_i(x_i) \\
\text{subject to} & \quad (x_1, \ldots, x_m) \in S,
\end{align*}
\]

- \(f_i : H_i \to \mathbb{R} \cup \{+\infty\} \) proper, convex,
- \(S \subseteq \prod_{i=1}^{m} H_i \) is a closed linear subspace

\((P)\) will be our primal model.
\((P)\) has a very symmetric dual problem:
Monotropic Model (Minty, 1960)

\[
\begin{align*}
\text{min} & \quad \sum_{i=1}^{m} f_i(x_i) \\
\text{subject to} & \quad (x_1, \ldots, x_m) \in S,
\end{align*}
\]

- \(f_i : H_i \rightarrow \mathbb{R} \cup \{+\infty\} \) proper, convex,
- \(S \subseteq \prod_{i=1}^{m} H_i \) is a closed linear subspace

\((P)\) will be our primal model.
\((P)\) has a very symmetric dual problem:

\[\min \sum_{i=1}^{m} f_i(x_i) \quad (P) \]

subject to \((x_1, \ldots, x_m) \in S,\)

\[f_i : H_i \to \mathbb{R} \cup \{+\infty\} \text{ proper, convex}, \]

\[S \subseteq \prod_{i=1}^{m} H_i \text{ is a closed linear subspace} \]

\((P)\) will be our primal model.

\((P)\) has a very symmetric dual problem:

\[
\min \sum_{i=1}^{m} f_i(x_i) \quad (P)
\]

subject to \((x_1, \ldots, x_m) \in S,\)

- \(f_i : H_i \rightarrow \mathbb{R} \cup \{+\infty\}\) proper, convex,
- \(S \subseteq \prod_{i=1}^{m} H_i\) is a closed linear subspace

\((P)\) will be our primal model. \((P)\) has a very symmetric dual problem:

\[
\begin{align*}
\min & \sum_{i=1}^{m} f_i(x_i) \\
\text{subject to} & \quad (x_1, \ldots, x_m) \in S,
\end{align*}
\]

- \(f_i : H_i \rightarrow \mathbb{R} \cup \{+\infty\} \) proper, convex,
- \(S \subseteq \prod_{i=1}^{m} H_i \) is a closed linear subspace

\((P)\) will be our primal model.
\((P)\) has a very symmetric dual problem:

\[
\begin{align*}
\min & \sum_{i=1}^{m} f_i(x_i) \quad (P) \\
\text{subject to} & \quad (x_1, \ldots, x_m) \in S,
\end{align*}
\]

- \(f_i: H_i \rightarrow \mathbb{R} \cup \{+\infty\} \) proper, convex,
- \(S \subseteq \prod_{i=1}^{m} H_i \) is a closed linear subspace

\((P)\) will be our primal model.

\((P)\) has a very symmetric dual problem:
Dual of (P)

\[
\begin{align*}
\text{max} & \quad \sum_{i=1}^{m} -f_i^*(x_i^*) \\
\text{subject to} & \quad (x_1^*, \ldots, x_m^*) \in S^\perp,
\end{align*}
\]

- \(f_i^* : H_i \to \mathbb{R} \cup +\infty \) Fenchel conjugate of \(f_i \),
- \(S^\perp \subseteq \prod_{i=1}^{m} H_i \) is the subspace orthogonal to \(S \)
Dual of (P)

\[
\max \sum_{i=1}^{m} -f_i^*(x_i^*) \quad (D)
\]

subject to \((x_1^*, \ldots, x_m^*) \in S^\perp,\)

- \(f_i^* : H_i \to \mathbb{R} \cup +\infty \) \textit{Fenchel conjugate} of \(f_i,\)
- \(S^\perp \subseteq \prod_{i=1}^{m} H_i\) is the subspace orthogonal to \(S\)
Dual of (P)

\[
\max \sum_{i=1}^{m} -f_i^*(x_i^*) \quad (D)
\]

subject to \((x_1^*, \ldots, x_m^*) \in S^\perp,\)

- \(f_i^* : H_i \rightarrow \mathbb{R} \cup +\infty\) Fenchel conjugate of \(f_i,\)
- \(S^\perp \subseteq \prod_{i=1}^{m} H_i\) is the subspace orthogonal to \(S\)
Our aim:

1. Formulate CFP as a monotropic programming problem.
2. Use duality for analysing its consistency (i.e., deduce whether a solution exists or not).
Our aim:

- Formulate CFP as a monotropic programming problem
- Use duality for analysing its consistency (i.e., deduce whether a solution exists or not).
Our aim:

- Formulate CFP as a monotropic programming problem

- Use duality for analysing its consistency (i.e., deduce whether a solution exists or not).
Basic Ingredients:

- The Fenchel conjugate of f is $f^* : H \to \mathbb{R} \cup \{+\infty\}$

 $$f^*(v) := \sup_{x \in H} \{ \langle v, x \rangle - f(x) \}$$

- The subdifferential of f at x is defined by

 $$\partial f(x) := \{ v \in H \mid \langle v, y - x \rangle \leq f(y) - f(x), \; \text{for all} \; y \in H \}$$

 if $f(x) \in \mathbb{R}$, and \emptyset otherwise.
Basic Ingredients:

- The **Fenchel conjugate** of f is $f^* : H \rightarrow \mathbb{R} \cup \{+\infty\}$

 $$f^*(v) := \sup_{x \in H} \{ \langle v, x \rangle - f(x) \}$$

- The **subdifferential** of f at x is defined by

 $$\partial f(x) := \{ v \in H \mid \langle v, y - x \rangle \leq f(y) - f(x), \text{ for all } y \in H \}$$

 if $f(x) \in \mathbb{R}$, and \emptyset otherwise.
Basic Ingredients:

- The **Fenchel conjugate** of f is $f^* : H \rightarrow \mathbb{R} \cup \{+\infty\}$

 \[f^*(v) := \sup_{x \in H} \{ \langle v, x \rangle - f(x) \} \]

- The **subdifferential** of f at x is defined by

 \[\partial f(x) := \{ v \in H \mid \langle v, y - x \rangle \leq f(y) - f(x), \text{ for all } y \in H \} \]

 if $f(x) \in \mathbb{R}$, and \emptyset otherwise.
Basic Ingredients:

- The **Fenchel conjugate** of \(f \) is \(f^* : H \rightarrow \mathbb{R} \cup \{+\infty\} \)

\[
f^*(v) := \sup_{x \in H} \{ \langle v, x \rangle - f(x) \}
\]

- The **subdifferential** of \(f \) at \(x \) is defined by

\[
\partial f(x) := \{ v \in H \mid \langle v, y - x \rangle \leq f(y) - f(x), \text{ for all } y \in H \},
\]

if \(f(x) \in \mathbb{R} \), and \(\emptyset \) otherwise.
Basic Ingredients:

- The **Fenchel conjugate** of f is $f^*: H \rightarrow \mathbb{R} \cup \{+\infty\}$

 $$f^*(v) := \sup_{x \in H} \{\langle v, x \rangle - f(x)\}$$

- The **subdifferential** of f at x is defined by

 $$\partial f(x) := \{v \in H | \langle v, y - x \rangle \leq f(y) - f(x), \text{ for all } y \in H\},$$

 if $f(x) \in \mathbb{R}$, and \emptyset otherwise.
Basic Ingredients:

- The **Fenchel conjugate** of f is $f^* : H \rightarrow \mathbb{R} \cup \{+\infty\}$

$$f^*(v) := \sup_{x \in H} \{\langle v, x \rangle - f(x)\}$$

- The **subdifferential** of f at x is defined by

$$\partial f(x) := \{v \in H \mid \langle v, y - x \rangle \leq f(y) - f(x), \text{ for all } y \in H\},$$

if $f(x) \in \mathbb{R}$, and \emptyset otherwise.
Basic Ingredients:

- The *Fenchel conjugate* of f is $f^* : H \to \mathbb{R} \cup \{+\infty\}$

\[
 f^*(v) := \sup_{x \in H} \{ \langle v, x \rangle - f(x) \}
\]

- The *subdifferential* of f at x is defined by

\[
 \partial f(x) := \{ v \in H \mid \langle v, y - x \rangle \leq f(y) - f(x), \text{ for all } y \in H \},
\]

if $f(x) \in \mathbb{R}$, and \emptyset otherwise.
Basic Ingredients (II):

- For $C \subset H$, the *indicator function* of C is $\iota_C(x) := 0$ if $x \in C$ and $\iota_C(x) := +\infty$ otherwise.

- The *support function* of C is
 \[
 \sigma_C(v) := \sup_{y \in C} \langle v, y \rangle
 \]
 for $v \in H$

Easy to check \((\iota_C)^* = \sigma_C\)
Basic Ingredients (II):

- For $C \subset H$, the *indicator function* of C is $\iota_C(x) := 0$ if $x \in C$ and $\iota_C(x) := +\infty$ otherwise.

- The *support function* of C is

 $$\sigma_C(v) := \sup_{y \in C} \langle v, y \rangle$$

 for $v \in H$.

Easy to check: $(\iota_C)^* = \sigma_C$.
Basic Ingredients (II):

- For $C \subset H$, the *indicator function* of C is $\iota_C(x) := 0$ if $x \in C$ and $\iota_C(x) := +\infty$ otherwise.

- The *support function* of C is $\sigma_C(v) := \sup_{y \in C} \langle v, y \rangle$ for $v \in H$.

Easy to check $\left(\iota_C\right)^* = \sigma_C$.
Basic Ingredients (II):

- For \(C \subset H \), the *indicator function* of \(C \) is \(\iota_C(x) := 0 \) if \(x \in C \) and \(\iota_C(x) := +\infty \) otherwise.

- The the *support function* of \(C \) is

 \[
 \sigma_C(v) := \sup_{y \in C} \langle v, y \rangle
 \]

 for \(v \in H \)

Easy to check \((\iota_C)^* = \sigma_C \)
Basic Ingredients (II):

- For $C \subset H$, the *indicator function* of C is $\iota_C(x) := 0$ if $x \in C$ and $\iota_C(x) := +\infty$ otherwise.

- The *support function* of C is

$$
\sigma_C(v) := \sup_{y \in C} \langle v, y \rangle
$$

for $v \in H$

Easy to check $(\iota_C)^* = \sigma_C$
Basic Ingredients (II):

- For $C \subset H$, the *indicator function* of C is $\iota_C(x) := 0$ if $x \in C$ and $\iota_C(x) := +\infty$ otherwise.

- The *support function* of C is

 $$
 \sigma_C(v) := \sup_{y \in C} \langle v, y \rangle
 $$

 for $v \in H$

Easy to check $$(\iota_C)^* = \sigma_C$$
Basic Ingredients (III):

For \(\psi_1, \psi_2 : H \to \mathbb{R} \cup \{+\infty\} \), their *infimal convolution* is defined by

\[
(\psi_1 \Box \psi_2)(z) := \inf_{z_1 + z_2 = z} \{ \psi_1(z_1) + \psi_2(z_2) \}.
\]

For \(f : H \to \mathbb{R} \cup \{+\infty\} \) recall that the *epigraph* is the set

\[
epi f := \{(x, r) \in H \times \mathbb{R} : f(x) \leq r\}.
\]
Basic Ingredients (III):

For $\psi_1, \psi_2 : H \to \mathbb{R} \cup \{+\infty\}$, their \textit{infimal convolution} is defined by

$$
(\psi_1 \Box \psi_2)(z) := \inf_{z_1 + z_2 = z} \{\psi_1(z_1) + \psi_2(z_2)\}.
$$

For $f : H \to \mathbb{R} \cup \{+\infty\}$ recall that the \textit{epigraph} is the set

$$
\text{epi } f := \{(x, r) \in H \times \mathbb{R} : f(x) \leq r\}.
$$
Basic Ingredients (III):

For $\psi_1, \psi_2 : H \to \mathbb{R} \cup \{+\infty\}$, their *infimal convolution* is defined by

$$(\psi_1 \Box \psi_2)(z) := \inf_{z_1 + z_2 = z} \left\{ \psi_1(z_1) + \psi_2(z_2) \right\}.$$

For $f : H \to \mathbb{R} \cup \{+\infty\}$ recall that the *epigraph* is the set

$$\text{epi } f := \{(x, r) \in H \times \mathbb{R} : f(x) \leq r\}.$$
Basic Ingredients (III):

For $\psi_1, \psi_2 : H \rightarrow \mathbb{R} \cup \{+\infty\}$, their \textit{infimal convolution} is defined by

$$(\psi_1 \Box \psi_2)(z) := \inf_{z_1 + z_2 = z} \{\psi_1(z_1) + \psi_2(z_2)\}.$$

For $f : H \rightarrow \mathbb{R} \cup \{+\infty\}$ recall that the \textit{epigraph} is the set

$$\text{epi } f := \{(x, r) \in H \times \mathbb{R} : f(x) \leq r\}$$
Fact (B.-Jeyakumar, 2005):

$C, D \subset H$ closed convex:

$C \cap D \neq \emptyset \iff (0, -1) \notin \text{cl}(\text{epi} \sigma_C + \text{epi} \sigma_D)$
Fact (B.-Jeyakumar, 2005):

\(C, D \subset H \) closed convex:

\[C \cap D \neq \emptyset \iff (0, -1) \notin \text{cl}(\text{epi} \sigma_C + \text{epi} \sigma_D) \]
Fact (B.-Jeyakumar, 2005):

\[C, D \subset H \text{ closed convex:} \]

\[C \cap D \neq \emptyset \iff (0, -1) \notin \text{cl} (\text{epi} \sigma_C + \text{epi} \sigma_D) \]
Primal for CFP:

Our problem is (recall we reduced the problem to 2 sets):

\[
\text{find } (x, y) \in C_1 \times C_2 \subset H \times H, \text{ such that } x = y
\]

which can be formulated as

\[
\min_{(x, y) \in S} d_{C_1}(x) + d_{C_2}(y) \tag{P}
\]

where \(S = \{(x, y) \in H^2 : x = y\} \).
Using monotropic formulation we obtain its dual:

\[
\sup_{(v, w) \in S^\perp} - d^*_C(v) - d^*_C(w)
\]

where \(S^\perp = \{(u, v) \in H^2 : u + v = 0\} \).

What do we know about this primal-dual pair?
Dual for CFP:

Using monotropic formulation we obtain its dual:

\[
\sup_{(v, w) \in S^\perp} \left(d_{C_1}^*(v) - d_{C_2}^*(w) \right) \quad (D)
\]

where \(S^\perp = \{(u, v) \in H^2 : u + v = 0\} \).

What do we know about this primal-dual pair?
Duality facts:

Pro 15.22 and Theo 19.1 from Bauschke-Combettes book yield:

$$\nu(P) = \nu(D)$$ and (D) always has a solution

In this situation, \((x, y)\) solves \((P)\) and \((u, v)\) solves \((D)\). Moreover,

\[
\begin{align*}
(x, y) &\in S, \\
(u, v) &\in S^\perp, \\
u &\in \partial d_{C_1}(x), \\
v &\in \partial d_{C_2}(y)
\end{align*}
\]

Proof not very direct!
Duality facts:

Pro 15.22 and Theo 19.1 from Bauschke-Combettes book yield:

\[v(P) = v(D) \text{ and } (D) \text{ always has a solution} \]

In this situation, \((x, y)\) solves \((P)\) and \((u, v)\) solves \((D)\). Moreover,

\[
\begin{align*}
(x, y) &\in S, \quad (u, v) \in S^\perp \\
u &\in \partial d_{c_1}(x) \\
v &\in \partial d_{c_2}(y)
\end{align*}
\]

Proof not very direct!
Duality facts:

Pro 15.22 and Theo 19.1 from Bauschke-Combettes book yield:

\[\nu(P) = \nu(D) \text{ and } (D) \text{ always has a solution} \]

In this situation, \((x, y)\) solves \((P)\) and \((u, v)\) solves \((D)\). Moreover,

\[(x, y) \in S, \quad (u, v) \in S_{\perp} \]
\[u \in \partial d_{C_1}(x) \quad \quad v \in \partial d_{C_2}(y) \]

Proof not very direct!
\[d^*_C(v) = \sigma_C(v) + \iota_B(v) \] yields:

\[
\sup_{v \in H} \left[-d^*_C(v) - d^*_C(-v) \right] = \min_{t \in [0,1]} \left(\inf_{\|v\| \leq 1} \sigma_C(v) + \sigma_C(-v) \right),
\]

which gives an equivalent reformulation of the dual in terms of \(\Phi(1) \). Always \(\Phi(1) \leq 0 \). Value \(\Phi(1) \) gives important information:
\[d_C^*(v) = \sigma_C(v) + \nu_B(v) \]
yields:

\[
\sup_{v \in H} - d_{C_1}^*(v) - d_{C_2}^*(-v) = \\
= - \min_t \left(\inf_{\|v\| \leq 1} \sigma_{C_1}(v) + \sigma_{C_2}(-v) \right),
\]

which gives an equivalent reformulation of the dual in terms of \(\Phi(1) \). Always \(\Phi(1) \leq 0 \). Value \(\Phi(1) \) gives important information:
\[d^*_C(v) = \sigma_C(v) + \nu_B(v) \] yields:

\[
\sup_{v \in H} - d^*_C(v) - d^*_C(-v) = - \min_{t \in [0,1]} \left(\inf_{\|v\| \leq 1} \sigma_C(v) + \sigma_C(-v) \right),
\]

which gives an equivalent reformulation of the dual in terms of \(\Phi(1) \). Always \(\Phi(1) \leq 0 \). Value \(\Phi(1) \) gives important information:
Consistency results for CFP:

1. \(\Phi(1) < 0 \iff 0 \notin \text{cl}(C_2 - C_1) \). So \(C_1 \cap C_2 = \emptyset \).

2. \(\Phi(1) = 0 \iff 0 \in \text{cl}(C_2 - C_1) \). This leads to two cases:

 2.1 If \((\sigma_{C_1} \square \sigma_{C_2}) \) is lsc at 0, then \(C_1 \cap C_2 \neq \emptyset \).

 2.2 If \((\sigma_{C_1} \square \sigma_{C_2}) \) is not lsc at 0, then \(C_1 \cap C_2 = \emptyset \) or \(\exists \) (possibly improper) closed separating hyperplane.

 (I.e., \(0 \in \text{cl}(C_2 - C_1) \setminus (C_2 - C_1) \))
Consistency results for CFP:

1. $\Phi(1) < 0 \iff 0 \notin \text{cl}(C_2 - C_1)$. So $C_1 \cap C_2 = \emptyset$.

2. $\Phi(1) = 0 \iff 0 \in \text{cl}(C_2 - C_1)$. This leads to two cases:

 2.1 If $(\sigma C_1 \square \sigma C_2)$ is lsc at 0, then $C_1 \cap C_2 \neq \emptyset$.

 (i.e., $0 \in (C_2 - C_1)$)

 2.2 If $(\sigma C_1 \square \sigma C_2)$ is not lsc at 0 then $C_1 \cap C_2 = \emptyset$, \exists (possibly improper) closed separating hyperplane.

 (i.e., $0 \in \text{cl}(C_2 - C_1) \setminus (C_2 - C_1)$)
Consistency results for CFP:

1. $\Phi(1) < 0 \iff 0 \notin \text{cl} (C_2 - C_1)$. So $C_1 \cap C_2 = \emptyset$.

2. $\Phi(1) = 0 \iff 0 \in \text{cl} (C_2 - C_1)$. This leads to two cases:

 2.1 If $(\sigma_{C_1} \square \sigma_{C_2})$ is lsc at 0, then $C_1 \cap C_2 \neq \emptyset$.

 (i.e., $0 \in (C_2 - C_1)$)

 2.2 If $(\sigma_{C_1} \square \sigma_{C_2})$ is not lsc at 0 then $C_1 \cap C_2 = \emptyset$, \exists (possibly improper) closed separating hyperplane.

 (i.e., $0 \in \text{cl} (C_2 - C_1) \setminus (C_2 - C_1)$)
Consistency results for CFP:

1. \(\Phi(1) < 0 \iff 0 \notin \text{cl}(C_2 - C_1) \). So \(C_1 \cap C_2 = \emptyset \).

2. \(\Phi(1) = 0 \iff 0 \in \text{cl}(C_2 - C_1) \). This leads to two cases:

 2.1 If \((\sigma_{C_1} \sqcup \sigma_{C_2}) \) is lsc at \(0 \), then \(C_1 \cap C_2 \neq \emptyset \).

 (i.e., \(0 \in (C_2 - C_1) \))

 2.2 If \((\sigma_{C_1} \sqcup \sigma_{C_2}) \) is not lsc at \(0 \) then \(C_1 \cap C_2 = \emptyset \), \exists \) (possibly improper) closed separating hyperplane.

 (i.e., \(0 \in \text{cl}(C_2 - C_1) \setminus (C_2 - C_1) \))
Consistency results for CFP:

1. \(\Phi(1) < 0 \iff 0 \notin \text{cl}(C_2 - C_1) \). So \(C_1 \cap C_2 = \emptyset \).

2. \(\Phi(1) = 0 \iff 0 \in \text{cl}(C_2 - C_1) \). This leads to two cases:

 2.1 If \((\sigma_{C_1} \square \sigma_{C_2}) \) is lsc at 0, then \(C_1 \cap C_2 \neq \emptyset \).

 (i.e., \(0 \in (C_2 - C_1) \))

 2.2 If \((\sigma_{C_1} \square \sigma_{C_2}) \) is not lsc at 0 then \(C_1 \cap C_2 = \emptyset \), \(\exists \) (possibly improper) closed separating hyperplane.

 (i.e., \(0 \in \text{cl}(C_2 - C_1) \setminus (C_2 - C_1) \))
Consistency results for CFP:

1. \(\Phi(1) < 0 \iff 0 \notin \text{cl} \,(C_2 - C_1) \). So \(C_1 \cap C_2 = \emptyset \).

2. \(\Phi(1) = 0 \iff 0 \in \text{cl} \,(C_2 - C_1) \). This leads to two cases:

 2.1 If \((\sigma_{C_1} \sqcap \sigma_{C_2}) \) is lsc at 0, then \(C_1 \cap C_2 \neq \emptyset \).

 (i.e., \(0 \in (C_2 - C_1) \))

 2.2 If \((\sigma_{C_1} \sqcap \sigma_{C_2}) \) is not lsc at 0 then \(C_1 \cap C_2 = \emptyset \), \(\exists \) (possibly improper) closed separating hyperplane.

 (i.e., \(0 \in \text{cl} \,(C_2 - C_1) \setminus (C_2 - C_1) \))
Consistency results for CFP:

1. $\Phi(1) < 0 \iff 0 \notin \text{cl}(C_2 - C_1)$. So $C_1 \cap C_2 = \emptyset$.

2. $\Phi(1) = 0 \iff 0 \in \text{cl}(C_2 - C_1)$. This leads to two cases:

 2.1 If $(\sigma_{C_1} \square \sigma_{C_2})$ is lsc at 0, then $C_1 \cap C_2 \neq \emptyset$.

 (i.e., $0 \in (C_2 - C_1)$)

 2.2 If $(\sigma_{C_1} \square \sigma_{C_2})$ is not lsc at 0 then $C_1 \cap C_2 = \emptyset$, \exists (possibly improper) closed separating hyperplane.

 (i.e., $0 \in \text{cl}(C_2 - C_1) \setminus (C_2 - C_1)$)
Characterization of Consistency:

Assume that \((\sigma_{C_1} \boxtimes \sigma_{C_2})(0) > -\infty\). Then \((\sigma_{C_1} \boxtimes \sigma_{C_2})\) is proper, and TFSAE:

(i) \(C_1 \cap C_2 \neq \emptyset\),

(ii) \((\sigma_{C_1} \boxtimes \sigma_{C_2})\) is lsc at 0,

(iii) \(\{0\} \times \mathbb{R} \cap \text{epi} (\sigma_{C_1} \boxtimes \sigma_{C_2}) = \{0\} \times \mathbb{R}_{+}\)

Consequently, if \(\text{epi} \sigma_{C_1} + \text{epi} \sigma_{C_2}\) is closed, then \(C_1 \cap C_2 \neq \emptyset\).
Characterization of Consistency:

Assume that \((\sigma_{C_1} \square \sigma_{C_2})(0) > -\infty\). Then \((\sigma_{C_1} \square \sigma_{C_2})\) is proper, and TFSAE:

\[
\begin{align*}
(i) & \quad C_1 \cap C_2 \neq \emptyset, \\
(ii) & \quad (\sigma_{C_1} \square \sigma_{C_2}) \text{ is lsc at } 0, \\
(iii) & \quad \{0\} \times \mathbb{R} \cap \text{epi} (\sigma_{C_1} \square \sigma_{C_2}) = \{0\} \times \mathbb{R}_+
\end{align*}
\]

Consequently, if \(\text{epi } \sigma_{C_1} + \text{epi } \sigma_{C_2}\) is closed, then \(C_1 \cap C_2 \neq \emptyset\).
Characterization of Consistency:

Assume that \((\sigma_{C_1} \Box \sigma_{C_2})(0) > -\infty\). Then \((\sigma_{C_1} \Box \sigma_{C_2})\) is proper, and TFSAE:

(i) \(C_1 \cap C_2 \neq \emptyset\),

(ii) \((\sigma_{C_1} \Box \sigma_{C_2})\) is lsc at 0,

(iii) \(\{0\} \times \mathbb{R} \cap \text{epi} \,(\sigma_{C_1} \Box \sigma_{C_2}) = \{0\} \times \mathbb{R}_+\)

Consequently, if \(\text{epi} \, \sigma_{C_1} + \text{epi} \, \sigma_{C_2}\) is closed, then \(C_1 \cap C_2 \neq \emptyset\).
Characterization of Consistency:

Assume that $(\sigma C_1 \boxminus \sigma C_2)(0) > -\infty$. Then $(\sigma C_1 \boxminus \sigma C_2)$ is proper, and TFSAE:

(i) $C_1 \cap C_2 \neq \emptyset$,

(ii) $(\sigma C_1 \boxminus \sigma C_2)$ is lsc at 0,

(iii) $\{0\} \times \mathbb{R} \cap \text{epi} (\sigma C_1 \boxminus \sigma C_2) = \{0\} \times \mathbb{R}_+$

Consequently, if $\text{epi} \sigma C_1 + \text{epi} \sigma C_2$ is closed, then $C_1 \cap C_2 \neq \emptyset$.
Characterization of Consistency:

Assume that \((\sigma_{C_1} \square \sigma_{C_2})(0) > -\infty\). Then \((\sigma_{C_1} \square \sigma_{C_2})\) is proper, and TFSAE:

\[(i) \ C_1 \cap C_2 \neq \emptyset,\]

\[(ii) \ (\sigma_{C_1} \square \sigma_{C_2}) \text{ is lsc at } 0,\]

\[(iii) \ \{0\} \times \mathbb{R} \cap \text{epi} (\sigma_{C_1} \square \sigma_{C_2}) = \{0\} \times \mathbb{R}_+\]

Consequently, if \(\text{epi} \sigma_{C_1} + \text{epi} \sigma_{C_2}\) is closed, then \(C_1 \cap C_2 \neq \emptyset\).
Consistency for CFP in the critical case $v(D) = 0$:

Recall that (D) always has solutions. Assume $v(D) = 0$. Then:

(a) If $v = 0$ is unique solution of $(D) \iff C_1 \cap C_2 \neq \emptyset$.

(b) (D) has multiple solutions if and only if $C_1 \cap C_2 = \emptyset$. In this situation, every nonzero dual solution induces a possibly improper separation of the sets.
Consistency for CFP in the critical case $v(D) = 0$:

Recall that (D) always has solutions. Assume $v(D) = 0$. Then:

(a) If $v = 0$ is unique solution of $(D) \iff C_1 \cap C_2 \neq \emptyset$.

(b) (D) has multiple solutions if and only if $C_1 \cap C_2 = \emptyset$. In this situation, every nonzero dual solution induces a possibly improper separation of the sets.
Inconsistency for CFP in critical case \(d(C_1, C_2) = 0 \).

TFSAE:

(i) \((P)\) has no solutions.

(ii) \(0 \in \text{cl}(C_1 - C_2) \setminus (C_1 - C_2)\).

(iii) \(\sigma_{C_1} \square \sigma_{C_2}\) is not lsc at 0.

(v) \(\{0\} \times \mathbb{R}_{--} \cap \text{epi} (\sigma_{C_1} \square \sigma_{C_2}) \neq \emptyset\).
Inconsistency for CFP in critical case $d(C_1, C_2) = 0$.

TFSAE:

(i) (P) has no solutions.

(ii) $0 \in \text{cl}(C_1 - C_2) \setminus (C_1 - C_2)$.

(iii) $\sigma_{C_1} \square \sigma_{C_2}$ is not lsc at 0.

(v) $\{0\} \times \mathbb{R}_- \cap \text{epi} (\sigma_{C_1} \square \sigma_{C_2}) \neq \emptyset$.
Inconsistency for CFP in critical case $d(C_1, C_2) = 0$.

TFSAE:

(i) (P) has no solutions.

(ii) $0 \in \text{cl}(C_1 - C_2) \setminus (C_1 - C_2)$.

(iii) $\sigma_{C_1} \square \sigma_{C_2}$ is not lsc at 0.

(v) $\{0\} \times \mathbb{R}_{--} \cap \text{epi} (\sigma_{C_1} \square \sigma_{C_2}) \neq \emptyset$.
Inconsistency for CFP in critical case \(d(C_1, C_2) = 0 \).

TFSAE:

(i) \((P)\) has no solutions.

(ii) \(0 \in \text{cl}(C_1 - C_2) \setminus (C_1 - C_2)\).

(iii) \(\sigma_{C_1} \square \sigma_{C_2}\) is not lsc at 0.

(v) \(\{0\} \times \mathbb{R}_{-\infty} \cap \text{epi} (\sigma_{C_1} \square \sigma_{C_2}) \neq \emptyset\).