

Making Optimisation Balancing Intuitive

ABS produces a range of social and economic statistical tables e.g.:

- Economic accounts
- Environmental accounts
- Employment figures
- Population estimates (used to determine electoral representation)
 - etc. etc. etc.

 Economic game: players produce and use a range of resources.

• Players sell the resources they produce to get the resources they need.

• Game involves a series of transactions.

- Economists want to understand:
 - Who's producing what goods & services ("products") over a given period
 - What products they consume to do it.
- Size of economy (GDP) = *net* production.
 - Don't double-count stuff that gets used up making other stuff.
- Divide economy into *sectors* (household, government, industries, ...) and *products*.

Supply-Use tables provide annual (and quarterly) summary of the Australian economy:

- Measures production and consumption of 301 products by 67 industries, household, and government sectors + exports/imports.
- Used to measure gross domestic product.
- Used as starting point for economic modelling.

Australian Bureau of Statistics Supply-Use (2)

Use (\$M)	Agriculture	Food mfg.	Telecommuni cations	Household sector
Sugar/ confectionery	5	2000	2	5000
Clothing	50	40	40	20000
Petrol	1300	100	900	20000
Financial services	1500	200	500	25000
		= 11.00 =		

The same economic transactions can be measured in several different ways, e.g.:

- Survey households and ask about spending on sugar/sweets.
- Survey retailers and ask about revenue from sugar/sweets.
- Get tax data from ATO and use to estimate sales etc.

- Many theoretical identities that *should* hold within these tables.
 - Total value of sugar bought = total value sold.
 - Total sales by retail industry = total costs + profits. etc. etc.
- Sum of Supply rows/columns should match corresponding Use rows/columns.
- Most sources have some degree of error.
- Need to adjust ("balance") for consistency.

- Big discrepancies are reviewed and adjusted by experts.
- Infeasible to completely balance via manual processes.
 - Multi-dimensional: balancing a row unbalances columns & v.v.
 - Too big: ~ 100,000 non-zero cells in SU.
- New automated process: quadratic optimisation with AMPL/Gurobi.

- \widetilde{x} = balanced (output) data (DV)
- $\Delta x = \tilde{x} \hat{x}$ (balancing adjustment)

 $S = \text{index set for } \widehat{x}, \, \widetilde{x}$

Subject to constraints, minimize leastsquares objective function:

$$\sum_{i \in S} (\Delta x_i)^2 w_i$$

- How do we set the weights?
 - Theory: if we have estimates of variance σ_i^2 for the error on each of our sources, then we should set $w_i = 1/\sigma_i^2$.
 - Usually we don't have these estimates.

- Balancing experts know a good outcome when they see it.
- Need to use this experience to design & iteratively improve the OF.
- Want to make weighting & debugging as intuitive as possible.
- Minimise number of design iterations required to get an acceptable OF.
- Want consistency with previous balancing.
 ²² ⁶ ⁴ ² ⁴ ⁶

General principles:

- Experts rate quality of cells.
- More trustworthy sources should get smaller adjustments.
- Cells with larger values should get larger adjustments.
- Set cell weight as function of magnitude and quality.
- For example...... 💰 🚽 🛠 🕈 🅖

Other agencies' methods for weighting:

$$1/w_i = |\hat{x}_i|^{\theta} h_i$$

 w_i = weight on cell *i* $|\hat{x}_i|$ = unbalanced magnitude of cell *i* θ = parameter, typically between 0 and 2 h_i = parameter for quality of sources for cell *i*.

$$1/w_i = |\hat{x}_i|^{\theta} h_i$$

Some questions:

- What should θ be?
- How do we make choice of h_i as meaningful as possible to subject matter experts?

One approach:

- Identify reasonable adjustment magnitude for each cell (SMEs or past data).
- Choose weights that will keep adjustments consistent with these expectations.

– Easier said than done!

- Supply-Use is large and complex.
 - ~100k cells, each involved in ~ 3 linear constraints and 1 nonlinear.

- System is too complex to quantify exactly how weighting choices will affect adjustments.
 - Depends also on inputs.
- Instead, consider a much simpler system with just one linear constraint...

Minimise OF:

$$OF(\widetilde{\mathbf{x}}) = \sum_{i \in S} (\widetilde{x}_i - \widehat{x}_i)^2 w_i$$

Subject to a single additive constraint:

$$g(\widetilde{\mathbf{x}}) = \sum_{i \in S} \widetilde{x}_i = c$$

$$\overset{\bullet}{=} \overset{\bullet}{=} \overset{\bullet}{=}$$

Lagrange multipliers tell us that the solution will satisfy:

$$\left(\frac{\partial OF}{\partial \tilde{x}_{1}}, \frac{\partial OF}{\partial \tilde{x}_{2}}, \dots, \frac{\partial OF}{\partial \tilde{x}_{N}}\right) = \lambda \left(\frac{\partial g}{\partial \tilde{x}_{1}}, \frac{\partial g}{\partial \tilde{x}_{2}}, \dots, \frac{\partial g}{\partial \tilde{x}_{N}}\right)$$

i.e.

$$\Delta x_i = (\tilde{x}_i - \hat{x}_i) = k/w_i$$

for some constant k.

& š 🚽 🛠 🕇 🥖

• Implies that $\theta = 2$ will lead to peculiar adjustment behaviour:

$$\Delta x_i \cong k/w_i = k |\hat{x}_i|^2 h_i$$

- Larger values get *quadratically* larger adjustments.
- This has undesirable consequences...
 A generation of the sequence of the s

Implications (2)

- If a value of \$10M is adjusted by -\$1M to \$9M:
 - \$90M will be adjusted by -\$81M to \$9M.
 - \$100M will be adjusted by -\$100M to zero.
- This turned out to be a known (but not published) issue for systems using $\theta = 2$.

- ABS occasionally merges/splits products & industries to reflect changes in structure of economy.
- Suppose we merge "ice cream, vanilla" and "ice cream, other" into single product "ice cream".
- Using $\theta = 2$, merging these products means higher % adjustment here.
- This is bad want consistency.

& š 🚽 🛠 🕇 🥖

Implications (4)

• Instead, this relationship implies we can use $\theta = 1$ and set h_i to equal expected % adjustment:

 $\Delta x_i \cong k |\hat{x}_i| h_i$

- Simple to apply and interpret.
- Despite simplifications, this seems to work pretty well in practice.
- Slight modification specific to this problem extends to nonlinear constraints.

- Sometimes expectations for data accuracy are unrealistic.
- Want to identify cases where accuracy expectations or input numbers require expert attention.
- Too much data for exhaustive checks need to filter/prioritise.
- How do we identify "anomalous" adjustments?

 Obvious approach, used elsewhere: focus on largest contributors to the objective function:

$$(\tilde{x}_i - \hat{x}_i)^2 w_i$$

 Lagrange-multiplier analysis for simple scenario suggests that this is a bad criterion...

- LM approach suggests we should expect adjustments proportional to $1/w_i$.
- Hence expected OF contribution by cell will be proportional to $w_i/w_i^2 = 1/w_i$.
- Hence this approach will emphasise cells with smallest weights and may miss problem cells with larger weights.

- LM implies that $(\tilde{x}_i \hat{x}_i)w_i$ is a better indicator for anomalous adjustments.
- Heat-map plots based on this indicator are very useful in spotting problems.
- Visualising the whole table can help identify patterns of anomalous adjustment...

Horizontal/vertical stripes show problems across a product/industry, not just one cell.

																								1.1.1.1					11.11		1.111			11.11		1.212				1. 11.10
																 							11		- 1. 11							14						1.1.1.1.1	- 2. 1.2	
			- 21													 											- 0. 0. 7. 0								1 D				- 0. 0.1.	
1.1																 																								
																 ÷							1210 1211			10.00									1 A A					
												1.4 1.3	12	1.432	1.41	 210			- 11 - 1													1.311						1.214		1.312
			-1.14		-1.11				1 L			1.1.1.1			-1.1h II	 					1.15 11			9. 91.19	-1.11	·	-1.12		-1.11		10.01			1.11					-1.12	1 .1.21
		1.24	11.12			-1.13										 															1.1	-19 E		· II . 3 h	1					
	1.11															 															1.1	33 8		1.111	1.1.1.1	1.114				1 11.12
	8.13												1			 															1.1	.11. 11.			1.1.1.1.1			1		1.1.1.1
	1.12	· II . I h		10.1					1.1	1.1					11.13	 		10.20			1.12 1		0.1 10.0	1.1.1					10.04		1.1	10.000			1.1.1.1	0.1bb		1 1.11	-11.14	1 1.21
1.1	.112	1.12			11.11		11.112			1.11					10.00	 					1.14		1.1	.I. (1.1)		11.11	- 11 - 11 11		11.12.1		1.1			0.193	1.1.1	8.331		1.114	-1.12	1. 11.11
													1.1.1			 					-1.19	1.1.													1 - N			1.1.1.1		1 11.24
						1.1	1.142					1 1111			1.121 11			1.112				1.1.1		1.1.11			8.833				1.1.1					8.338		1.211		1 1.13
																 																		1.14					- 11 - 1	1 11.32
																												- 21							1.1					
	- 24	-		- C.								1000	e 1			 												-										0 - D a		
													•			 																						C		
																 																- C			S					
																 											-11.13	-1.21										1 - N	1.131	1 1.123
																 					.421											1 1.412							1.412	
	.141															 			-8.28																1					
		1.1	1.21	1.4		1.4	1.1		1 1.6	21 11		61 <u>61</u>	1k I		1.311 11	 11 1.142	1.11					1 1.3	11 1.31	9 0.294	8.333	8.373	8.292		1.114	L141 I.	112 1.3	33 8.318			1					
									1 L.	.28		1.66				 						1 L.													1.1.1.1.1			1 I I I		
																 								1								1.1.1.1			1.1.1.1.1			1		1.1.1.1.1.1
																 																1.1.1.1			1.1.1.1			1		1.1.1.1.1
													i i			 																								
																 																			1.1					
																 	10.04											- 21				12. 12.14						C C .		
							- 21			1.1						 																								
			10.00	10.00	10.000			1000								 	-1.14	10.00								10.000		10.01				1 1111		- 1.1	1 10.01					
																 ÷																- C - C - C - C - C - C - C - C - C - C			S					
																 																			1 - C					
																 																			1.1.12					
																 								1 I I											1.1.1.1.1			1.1.1.1		
																 								1								1.1.1.1.1.1			1.1.1.1.1			1.1.1.1.1.1		1.1.1.1.1.1
													1 I I			 																1.1.1.1			1.1.1.1.1.1			1 1.122		1.1.1.1.1
																 																1.1.1.1			1.1.1.1.1					1.1.1.1.1.1
						1,122	1.111	LUN I		1.1.	121					 							1.1.11	1.1.1.0					1.111			1.1.211								
			1.114	1.121	1.124	1.115	1.112	1.121				÷				 		1.11	1.1.1			124 14	11. 1.12				1.124.1		1.12.1						1.1					
																 																			1 1					
																 																			S					
	- = - 1		-8.14								1.19 AL		10.12			 		-1.11			1.12		14 41.5		-1.11	-8.24	-1.14		10.11	1.1	- 1 E	11 111								
1.1			1.12													 																			1					
1.1	.133		1.121			1.111					1991 1.	31 1111			1.125 11		1.112	1.111		1.119 1	and it.	124 1.1	11.2	1		1.11	1.111		1.121 1		P. 11	11 I.I.I.								1.1.1.1
1													1			 								1								1.1.1.1			1.1.1.1.1.1			1		1.1.1.1.1
													1			 1																1.1.1.1		10.01	1.1.1		1.0	1.1.1.1.1		1.1.1.1
1.1		1.14				1.111			1.1.1	12 14	0.62	1.1.11			1.111.11	 33 8.838	1.131	1.112	1.1		.122 1.	124 1.1	10 - 11 - 11 - 11 - 11 - 11 - 11 - 11 -	1.1.1		1.111	1.121		1.111	L121 L	114 L.	121 1.123	1.1	10-0-0	1		1.00	1		1
												1	1 1			 1					1			1 1								1			1		1.0	1		1
										1.1		1.1				 1							1																	
			1.12		11.11	1.111		1.11								 	1.112	1.111											1.12.1					1.1.1.1						
																															-				-			-	-	-
																			5			23		_	<u>.</u>	1														
																								and the second			/													

Pattern of large positive adjustments with one large negative adjustment: probably driven by that exceptional cell.

- Now evaluating this method to balance data for the 2016-17 financial year.
- Old method requires ~120 staff-weeks of work every year.
- Hoping to cut this by about 75% while improving turn-around time and consistency.

