

Hands-on session on Influence Charts

Maria Antónia Carravilla

mac@fe.up.pt University of Porto, Faculty of Engineering

UNIÃO EUROPEIA Fundo Europeu de Desenvolvimento Regiona

Iceberg Can Be Towed To Supply Fresh Water For Drought Areas: How?

Towing Icebergs (movie)¹

¹E&T Magazine May 2011

Icebergs for Kuwait I

2

The cost of desalinating seawater using conventional technology in the Persian Gulf is high (around $0.1 \in /m^3$) and requires extensive amounts of oil. Some time ago scientists suggested that it could well prove both practically feasible and less expensive to tow icebergs from the Antarctic, a distance of about 9,600km. Although some of the ice would undoubtedly melt in transit, it was thought that a significant proportion of the iceberg would remain intact upon arrival in the Gulf. Bear in mind that since water expands upon freezing, $1m^3$ of ice produces only $0.85m^3$ of water.

A study was carried out to evaluate the practical problems associated with such a proposal and to quantify the factors that were likely to influence the economics of such a venture. One factor was the difference in rental costs and capacities of towing vessels. Note that each vessel has a maximum iceberg it can tow (measured in cubic meters). The Towing Vessel Data are summarised in Table 1.

Table 1: Towing Vessel Data

Ship Size	Small	Medium	Large
Daily rental (€)	400	600	800
Maximum load (m ³)	500,000	1,000,000	10,000,000

It was found that the melting rate of the iceberg depends on both the towing speed and the distance from the South Pole. The data in Table 2 represents the rate at which a hypothetical spherical iceberg shrinks in radius over a day at the given distance from the Pole and at the given towing speed.

	Distance from Pole (km)			
	1,000	2,000	3,000	\geq 4,000
Speed				
1 km/hr	0.06	0.12	0.18	0.24
3 km/hr	0.08	0.16	0.24	0.32
5 km/hr	0.10	0.20	0.30	0.40

Table 2: Melting Rates (meter/day)

Finally, fuel cost was found to depend on the towing speed and the (current) size of the iceberg. These costs are presented in Table 3.

Table 3: Fuel Costs (\in/m^3)

	Current Volume (m ³)			
	100,000	1,000,000	10,000,000	
Speed				
1 km/hr	8.4	10.5	12.6	
3 km/hr	10.8	13.5	16.2	
5 km/hr	13.2	16.5	19.8	

Determine whether it is economically feasible to produce water from icebergs in the Persian Gulf, and if it is, determine the best means to do so.

² in Management Science: The Art of Modeling with Spreadsheets, 3e, S.G. Powell and K.R. Baker. pp479; Source: Cross, M. and A.O. Moscardini, 1985. Learning the Art of Mathematical Modeling. Ellis Horward Limited, West Sussex.

- A mess is a morass of unsettling symptoms, causes, data, pressures, shortfalls, opportunities, etc...
- A problem is a clear situation that is capable of resolution.
- Identifying a problem in a mess is the first step in the creative problem-solving process.

- The objectives of the analysis are clear.
- The assumptions that must be made are obvious.
- All the necessary data are readily available.
- The logical structure behind the analysis is well understood.

Example: algebra problems are typically well-structured problems.

- The objectives of the analysis are unclear.
- The assumptions that must be made are unclear.
- It is unclear what data are needed and available.
- The logical structure behind the analysis is unclear.

Example: Icebergs Can Be Towed To Supply Fresh Water For Drought Areas?

Icebergs for Kuwait | Analysis

• Goals of the analysis:

To assess if it is economically feasible to produce water from icebergs in the Persian Gulf and if it is, to determine the best means to do so.

- Assumptions:
 - · Icebergs are available for free;
 - The speed of the towing vessels is constant;
 - The icebergs are spherical.
- Data needed:
 - Desalinating cost;
 - · Distance from the pole;
 - Shrink rate (ice-water volume conversion);
 - Rental costs of towing vessels;
 - · Capacities of towing vessels;
 - Melting rates;
 - Fuel cost.

- Offer the modeller a bridge between an ill-structured problem and a formal model.
- Identify the main elements of a model.
- Delineate the boundaries of a model.
- Are recommended for early stages of any problem formulation task.

Building Blocks for Influence Charts

- Influence Charts are built from right to left.
- Start with the outcome measure.
- Decompose the outcome measure into independent variables that directly determine it.
- Repeat the decomposition for each variable in turn.
- Identify input data and decisions as they arise.
- Each variable should appear only once.
- Highlight special types of elements with special symbols.

Icebergs for Kuwait – Influence Chart

Boat		Rental cost	Total cost	
	Number of Days			Water
Speed			Fuel	cost
			cost	COST
			Water	
Iceberg			volume at	
size			arrival	
	Distance	Melting		
	from pole	rate	Shrinking	
			rate	

Icebergs for Kuwait – Influence Chart

Dependencies that are lower or upper bounds on the decisions, variables or outcomes.

 \ldots to draw an arrow from the output back to the decisions, trying to represent that the outcome will be used to determine the best decision.

An influence chart, however, is a description of how we will calculate outcomes for a set of decisions and other parameters, it is not intended to be used to find the best decision!

- The goal is to develop the problem structure.
- To show outputs and how they are calculated from inputs.
- Influence Charts ignore all available numerical data.
- There is no one correct Influence Chart because Influence Charts rely on modelling assumptions.
- Modelling assumptions should be recorded as they are made.