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Disasters
Economic damages



Roads under disasters



Roads under disasters
Queensland wet seasons

From 2009-10 to 2011-12, road network sustained $9 billion in
damage in Queensland.

Of which $5 billion funded through Natural Disaster Relief.



Disaster Management
Life-cycle



Roads under disasters
Dimensions of resilience
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Literature
Literature topics on optimising road network resilience



Literature
A summary of the resilience-related terminologies for road networks

Terminology Definition

Resilience
Inherent ability of the road network to resist against a disaster as well as adapting
actions taken during post-event to reduce the impacts.

Reliability
The probability that a road network is capable of meeting its pre-defined
expectations and goals.

Vulnerability
The susceptibility of road network to disruptive events of any kind that can reduce
the serviceability of it.

Risk
The probability of destruction and damages in a road network imposed by a hazard
over a period of time.

Robustness The amount that a road network can retain its expected functionality.

Survivability
The extent to which a road network can continue its mission under given damages
to its compartments.

Flexibility
The strength of a road network to maintain its satisfactory performance under
external changes

Criticality
The extent to which the community and businesses are dependant on a road
network or some of its elements.

Serviceability The likelihood to use a road network over a period of time.



Literature
Network Design Problem

NDP

It deals with making optimal decisions about the expansion of
road network infrastructure (Yang & H. Bell, 1998).

CNDP, DNDP and MNDP

NDP under uncertainty

Scenario-based (Multi-stage SP) (Wang & Xie, 2016)

Robust (minimax, Uncertainty sets) (Yin, Madanat, & Lu,
2009)

Chance-constrained (Chen & Xu, 2012)

Probability models (+ alpha-reliable models and Meanvariance
models) (Unnikrishnan & Lin, 2012; Yin & Ieda, 2002)



Literature
Road network strengthening

Road network strengthening

Pre-event optimisation problems aime at finding the best
strengthening activities for the network (Asadabadi &
Miller-Hooks, 2017; Faturechi & Miller-Hooks, 2014a; Fan & Liu,
2010).

NDP as a means for optimising network strengthening

Usually formulated as a bi-level NDP.
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Problem formulation
Resilience indicators

Demand satisfaction resilience

RD
k = 1−

φ2
k(ξ2)∑

w∈W σk,w (ξ1)qw (ξ1)
, ∀k ∈ K (1)

Travel time resilience

RTT
k =

TT 1
k (ξ1)

TT 2
k (ξ2)

,∀k ∈ K (2)

TT 2
k (ξ2) =

∑
a∈A

υa,k(ξ2)ta(υa(ξ2), ca(ξ2)), ∀k ∈ K (3)

ta(va, ca) = t0
a .

(
1 + 0.15

(
va
ca

)4
)

(4)



Problem formulation
Scenario tree of two-stage Stochastic Mathematical Program



Problem formulation
Upper-level

max
δ1(ξ1)

[
E
[

max
δ2(ξ2),υa(ξ2)

RTT
1

]
, ..., E

[
max

δ2(ξ2),υa(ξ2)
RTT
K

]
, E
[

max
δ2(ξ2),υa(ξ2)

RD
1

]
, ..., E

[
max

δ2(ξ2),υa(ξ2)
RD
k

]]
(5)

s.t.

ca(ξ2) =

ca(ξ1) + δ
1,e
a (ξ1)+[ ∑

z∈Z

(
κz (ξ2)

(
cla,z (ξ2)(ca(ξ1) + δ

1,e
a (ξ1))(δ1,ret

a,z (ξ1)− 1)
)

+ δ
2
a,z (ξ2)

)]
, ∀a ∈ A

(6)

∑
a∈A

δ
1,e
a (ξ1)bea (ξ1) +

∑
z∈Z

κz (ξ2)
∑
a∈A

δ
1,ret
a,z (ξ1)breta,z (ξ1) +

∑
z∈Z

κz (ξ2)
∑
a∈A

δ
2
a,z (ξ2)breca,z (ξ2) ≤ B (7)

0 ≤ ca(ξ2) ≤ ca(ξ1), ∀a ∈ A (8)

δ
2
a,z (ξ2)treca,z ≤ T rec

, ∀a ∈ A, ∀z ∈ Z (9)∑
a∈A

∑
z∈Z

δ
2
a,z (ξ2)preca,z ≤ Prec (10)

0 ≤ δ1,ret
a (ξ1) ≤ 1, ∀a ∈ A (11)

υa(ξ2) ≥ 0, ∀a ∈ A (12)



Problem formulation
Lower-level: UE equilibrium

A variational inequality problem (Wu, Florian, & He, 2006; Kaviani, Thompson,
Rajabifard, & Sarvi, 2018):∑

w∈W

∑
k∈K

∑
r∈RW

[ρwr,k (ξ2)](f ∗)(fr − f ∗r ) ≥ 0, ∀f ∈ Λ (13)

Λ is the feasible set defined by:∑
r∈Rw

f wr,k (ξ2) = σk,w (ξ1)q
′
w (ξ2), ∀w ∈ W , ∀k ∈ K (14)

υa,k (ξ2) =
∑
w∈W

∑
r∈RW

f wr,k (ξ2)κk,a,r,w , ∀a ∈ A, ∀k ∈ K (15)

υa(ξ2) =
∑
w∈W

∑
r∈RW

∑
k∈K

PCEk
.υa,k (ξ2), ∀a ∈ A (16)

f wr,k (ξ2) ≥ 0, ∀r ∈ RW , ∀w ∈ W , ∀k ∈ K (17)

σk,w (ξ1)qw (ξ2) ≥ σk,w (ξ1)qw (ξ1), ∀w ∈ W , ∀k ∈ K (18)

ρ
w
r,k (ξ2) =

∑
a∈A

ta(υa(ξ2), ca(ξ2))κk,a,r,w , ∀k ∈ K , ∀r ∈ RW , ∀w ∈ W (19)

φ
2
k (ξ2) =

∑
w∈W

(σk,w (ξ1)qw (ξ2)−
∑

r∈RW

f wr,k (ξ2)), ∀k ∈ K (20)
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Conversion to single-level, mono-objectives

WSM

max
δ1(ξ1)

[
E
[

max
δ2(ξ2),υa(ξ2)

∑
k∈K

MwR
k R

D
k + wR

k R
TT
k

]]
(21)

s.t. ∑
k∈K

wR
k = 1 (22)

+ the rest of constraints

DUE constraints

Reduced into a single-level one by adding the Karush-Kuhn-Tucker
(KKT) conditions into the upper-level (Wang & Lo, 2010).{

f wr,k(ξ2)
(
ρwr,k(ξ2)− µw

k (ξ2)
)

= 0
ρwr,k(ξ2)− µw

k (ξ2) ≥ 0
∀k ∈ K ,∀r ∈ Rw , ∀w ∈W

(23)



Reformulation of the DUE constraints

Disjunctive constraints (Wang & Lo, 2010)

To circumvent the problems of disjunctive constraints (i.e. a
large constant), (Siddiqui & Gabriel, 2013) propose Schur’s
decomposition and Special Ordered Set (SOS) type 1
variables for solving the MPEC.

u(ξ2) = f (ξ2)+(ρ(ξ2)−µ(ξ2))
2

(v(ξ2)+ − v(ξ2)−) = f (ξ2)−(ρ(ξ2)−µ(ξ2))
2

u(ξ2)− (v(ξ2)+ + v(ξ2)−) = 0

(24)

(f (ξ2),ρ(ξ2) and µ(ξ2)) are vectors of flows, path travel times and
shortest travel times

Vector u(ξ2) and v(ξ2) are defined.

v(ξ2)+ and v(ξ2)− are SOS type 1 variables



Linearisation of the polynomial link performance function

ta(υa(ξ2), ca(ξ2)) = t0.

(
1 + 0.15

(υa(ξ2)

ca(ξ2)

)4
)

(25)

Techniques

First-order Taylor series. (Wang & Lo, 2010)

Transforming into logarithmic functions for which an
outer-approximation technique is required to solve the
non-linear problem. (Liu & Wang, 2015)

Logarithmic convex combination (Log). The best in
simplex-based approximations. (Faturechi & Miller-Hooks,
2014b)

SOS2 (Special Ordered Set type 2). The best
hypercube-based approximations according to (Silva &
Camponogara, 2014).



Linearisation of the polynomial link performance function
Rectangle activation

Figure: Single active square in a 2D domain space with capacity and
volume as dimensions.



Linearisation of the polynomial link performance function
Simplex activation

Figure: Activated simplex.



Linearisation of the polynomial link performance function
Interpolation

Last step is interpolation of the vertices of the activated simplex.

t̂a(υa(ξ2), ca(ξ2)) =
∑M

i=0

∑N
j=0 θ

i ,j
a .ta(v ja, c ia),

va =
∑M

i=0

∑N
j=0 θ

i ,j
a .v

j
a,

Ca =
∑M

i=0

∑N
j=0 θ

i ,j
a .C i

a,∑M
i=0

∑N
j=0 θ

i ,j
a = 1, ∀i ∈ 0, 1, ...,M, j ∈ 0, 1, ...,N,∀a ∈ A

θi ,ja ≥ 0,

(26)



Linearisation of the polynomial link performance function
Log model

Figure: Steps in Log model.

This second method outperforms!



Linear approximation of bi-linear terms

Methods

Incremental cost (IC)

Convex combination (CC)

SOS-based (Type 1 and 2)

Uni-variate or bi-variate partitioning schemes

We used bi-variate SOS type 1 that has the best performance
according to (Hasan & Karimi, 2010).



Linear relaxation of the objective function

We employ the method used by (Wang & Lo, 2010) and
(Faturechi & Miller-Hooks, 2014b) for linearisation of the
objective function. In this method, the objective function is
linearised through the use of shortest travel times (µwk (ξ2))
and the demand (σk,w (ξ1)qw (ξ2)).
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Stochastic programming methods

L-shaped decomposition (Van Slyke & Wets, 1969) - a
cutting-plane method that can be seen as a special case of
generalised Bender’s decomposition method.

Lagrangian-based method named Progressive Hedging (PH)
proposed by (Rockafellar & Wets, 1991) which has already
applied for stochastic network protection problems (Fan &
Liu, 2010).



Stochastic programming
Progressive hedging

max
δ1(ξω2 ),δ2(ξω2 ),υa(ξω2 )

∑
ω∈Ω

PωF (ξω2 ) (27)

s.t.
F (ξω2 ) =

∑
k∈K

MwR
k R

D
k − wR

k (RTT
k )−1 (28)

δ1(ξω2 )− δ1,z = 0,∀ω ∈ Ω (29)

+ other constraints

Where Pω = P({ω}),∀ω ∈ Ω is the probability of scenario ω
taking place in the probability space

(ξω2 ) is replaced with (ξ2) in all variables to indicate that the
quantities are scenario dependant.



Stochastic programming
Non-anticipativity constraint

δ1(ξω2 ) = δ1(ξω
′

2 ), ∀ω ∈ Ω,∀ω′ ∈ Ω, ω′ 6= ω (30)

Which is equivalent to the following:

δ1(ξω2 )− δ1,z = 0,∀ω ∈ Ω (31)

δ1,z is the vector of free variables.

Why needed?

To assure that the first stage decision variables are not
scenario-dependant.

Admissible solution systems satisfy constraints for all scenarios!



Stochastic programming
PH Algorithm

1 Initialisation. Set an index k equal to 0.
2 Solve

δ1(ξω2 )
(k)

:= argmaxδ1(ξω2 ),δ2(ξω2 )F (ξω2 ) : (δ1(ξω2 ), δ2(ξω2 )) ∈ Mω, ∀ω ∈ Ω.

3 δ1,z (k)
:=
∑
ω∈Ω Pωδ

1(ξω2 )
(k)

4 Θω,1(k)
:= r(δ1(ξω2 )

(k) − δ1,z (k)
), ∀ω ∈ Ω

5 Iteration update. k := k + 1

6 Decomposition.

δ1(ξω2 )
(k)

:= argmaxδ1(ξω2 2),δ2(ξω2 )F (ξω2 )− [Θω(k−1)]T .δ1(ξω2 )−
r
2
||δ1(ξω2 )− δ1,z (k−1)||

2
: (δ1(ξω2 ), δ2(ξω2 )) ∈ Mω,∀ω ∈ Ω

7 Aggregation δ1,z (k)
:=
∑
ω∈Ω Pωδ

1(ξω2 )
(k)

8 Weight update.Θω,1(k)
:= Θω,1(k−1)

+ r(δ1(ξω2 )
(k) − δ1,z (k)

), ∀ω ∈ Ω

9 Termination criterion. If
∑
ω∈Ω Pω||δ1(ξω2 )

(k) − δ1,z (k)|| ≤ ε, then go to
5, else, stop.

Where Θ is the vector of dual variables for the constraints in 31
(Weights) and r is the penalty value.
Mω,∀ω ∈ Ω is the set of all the feasible solutions for scenario ω that
meets the constraints of the problem
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Numerical experiment
Network

Figure: Road network for assessment.



Numerical experiment
Unit costs of actions

Link

Actions

Pre-disaster actions Post-response

Expansion
- per unit of expansion

Fortification
- in percentage

response
- per unit of response

bea breta,1 (per 1%) breta,2,(per 1%)
breca,1

(treca,z ,preca,z )

breca,2
(treca,z ,preca,z )

1 0 0.4 0.5 6 (3,1) 0

2 0 0.6 0 7(4,2) 0

3 2 0.5 0 0 6(3,1)

4 0 0.1 0.5 3(2,1) 2(1,1)

5 0 0.8 0 0 0

6 0 0.6 0 7.5(4,2) 0

7 0 0 0 4.5(2,1) 0

8 3 0.5 0 0 4.6(3,1)

9 0 0.8 0 5(6,2) 6(5,2)

10 0 0 0.5 0 0

11 0 0 0.5 6(3,1) 10(3,2)

12 0 0 0.5 12(4,3) 0

13 0 0 0.5 0 0

14 0 0.4 0.5 6(4,2) 0

15 0 0.8 0.5 7.5(5,1) 0

16 1 1 0.5 0 4.5(1,1)



Numerical experiment
Forthcoming natural disasters and their liklihood

Scenario ID Hazard type Links affected (capacity loss %) Liklihood

A 1000-year Flood 1(100%),4(100%),10(100%),13(100%),11(100%),8(100%),9(100%),14(100%) 0.01
B 500-year Flood 1(100%),4(100%),10(100%),11(100%),8(100%),14(100%),15(100%) 0.02
C 100-year Flood 4(100%),10(100%),11(100%),8(100%),14(100%),16(100%) 0.1
D 50-year Flood 1(100%),11(100%),14(100%) 0.2
E 10-year Flood 1(100%),4(100%) 0.2
F Landslide 4(80%),11(90%),8(70%) 0.25
G Landslide 4(50%),13(80%),8(50%),14(60%),7(50%) 0.22



Numerical experiment
Results for demand satisfaction resilience

Figure: DS resilience for different vehicle classes under various budgets
for the numerical experiment.



Numerical experiment
Results for travel time resilience

Figure: TT resilience for different vehicle classes under various budgets
for the numerical experiment.



Summary

A bi-level NDP used to optimise resilience.

Problem converted to SMPEC

Schur’s decomposition and SOS type two variables used for
linearisation and linear reformulation.

Progressive hedging applied for solving the reformulated
stochastic MILP.
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