
RESEARCH POSTER PRESENTATION DESIGN © 2015

www.PosterPresentations.com

Disaster management

Resource allocation: disaster management and staff shift patterns Signal processing: classification and clustering

Signal classification

Signal clustering

Shift patterns optimisation

Swinburne University of Technology and  Federation University Australia

Nadia Sukhorukova, Behrooz Bodaghi, Julien Ugon, Zahra 
Roshan Zamir and Aiden Fontes

Optimisation in industrial applications: disaster 
management and signal processing

FIGURE 1  Original levels of workload (week pattern)
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FIGURE 2  Modified levels of workload (week pattern)
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This problem can be seen as a further refinement of disaster management problem, resource allocation problem or as an independent problem. 

Supposed that a specified workload has to be covered by permanent staff members (lower rates, but have to be paid even when there is no job to 

be done) and casual (higher rates, but can be employed only for short periods). Permanent contracts do not have to be Monday to Friday, 8 hours 

every day, but they have to satisfy certain constraints: safety requirements, union agreement, etc. 

Given the workload (one year in advance) and possible shift patters, find the number of employees for each contract type that minimises the 

expenses. 

Several scenarios have been suggested. In all these scenarios the problem was formulated as a convex optimisation problem and solved using 

convex optimisation tools. The results have been published in:

Sukhorukova, N., Ugon, J., & Yearwood, J. (2009). Workload coverage through nonsmooth optimization. Optimization 

Methods & Software, 24, 285-298.

Example: six types of contract

•Type 1 : 5 days a week, 8 hours a day;

•Type 2 : 3 days a week (Tue-Thu) 8 hours a day (part time at 60%);

•Type 3 : 3 days a week (Tue-Thu) 13 hours a day Wed-Thu, 14 hours on Tue;

•Type 4 : 4 days a week (Mon-Thu) 10 hours a day;

•Type 5 : 4 days a week (Tue-Fri) 10 hours a day;

•Type 6, which is "Weekend workers".

Figure 3 represents a pattern of one week duration: 

•Black dots represent the total workload on a particular day;

•Blue rectangle represents Type 1 employment contract: 5 days a week, 8 hours a day;

•Light purple rectangle represents Type 2 employment contract: 3 days a week (Tue-Thu) 8 hours a day;

•Red rectangle represents Type 3 employment contract: 3 days a week (Tue-Thu) 13 hours a day Wed-Thu, 14 hours on Tue;

•Green rectangle represents Type 4 employment contract: 4 days a week (Mon-Thu) 10 hours a day;

•Dark purple rectangles represent Type 5 employment contract: 4 days a week (Tue-Fri) 10 hours a day;

•Yellow rectangles represent Type 6 employment contract or "Weekend workers".

On the current example (Figure 1) Monday and Friday are the days when additional resources are needed for workload covering. For these days 

additional subcontractor will have to be employed. 

On Tuesday, Wednesday and Thursday the situation is different: the actual workload is lower than the resources of the permanent staff. 

The dark curve represents an approximation of the workload which can be done by permanent staff (all types of employment). 

Figure 2 represents modified levels, after changing the size of the permanent staff (different change for different types of employment):

•Type 1 employment contract: decreased;

•Type 2 employment contract: decreased;

•Type 3 employment contract: unchanged;

•Type 4 employment contract: increased;

•Type 5 employment contract: unchanged;

•Type 6 employment contract: unchanged.

Manually changing the size of the permanent staff, it is possible to choose a better size for the permanent staff level.

The salary savings are around 10%. 

Any disaster response situation with scarce resources has to 

be  examined in order to coordinate several teams dealing 

with expandable and non-expendable resources. There is a 

given processing time for each incident once the relief 

operation for particular point starts. The processing time 

varies for each incident and depends on each team: each 

team has a unique processing and transportation time to 

respond to each incident. 

The objective function is the total weighted completion times 

overall incidents. The weighted factor depends on the 

severity level of damage and the total number of casualties 

that require relief on each incident. Hence, synchronization of 

the teams with expandable and non-expendable resources 

during the disaster response is required to lessen the 

incident’s completion time and delay on the relief required on 

each incident.

The Figure represents a map where 17 public hospitals 

(incident points, each point has a specified demand) have to 

be supplied from 2 airports (processing centres, each centre 

has a specified capacity). For each connection (processing 

centre-incident point) we assign a cost (total processing and 

transportation time). The goal is to minimise the total 

transportation time subject to the capacity constraints of each 

processing centre. We are currently running experiments on 

larger size problems.

One way to deal with this problem is to reformulate it as a mixed-integer linear problem.  In general, it is not very easy to work with integer and  

mixed-integer problems when the number of incident points and/or processing centres is increasing. One way to reduce the size of the problem is to 

implement various clustering techniques and develop approximation models that avoid integer variables. 

We have noticed that the problem of allocating expandable resources is equivalent to a well-known type of linear programming problems called 

Transportation Problems. It is enough to think about incident points as “Factories” (each factory capacity corresponds to the corresponding incident 

point demand), while the processing centres are “Markets” (each market demand corresponds to the processing centre capacity). The transportation 

costs are “total processing and transportation time”.

There are a number of efficient methods for solving Transportation Problems. One approach is based on formulation of the problem as a linear 

relaxations (that is, we do not require the solution to be integer). In practical situation, the solution has to be integer, since we can not transfer a 

fractional number of doctors, nurses, patients, etc. It is well-known, however, that the Simplex Method applied to a Transportation Problem 

terminates at an integer optimal solution (there may be several optimal solutions).  Therefore, we can reduce a mixed-integer linear programming 

problem to a linear programming problem and also found a way to obtain an optimal integer solution.

In the case of non-expandable resources, the problem can also be formulated as an integer programming problem, where some of the summations 

from a classical transportation problem constraints are replaced with maximisation. This problem is not a transportation problem, but it can be 

demonstrated that the applications of the Simplex Method also leads to an integer optimal solution. It can also be shown that this approach leads to 

other types of problems whose optimal solutions reached by the Simplex Method are guaranteed to be integer. 

THEOREM If in a feasible linear programming problem with equality constraints the right-hand-side of the constraints are integers 

and all the components of the constraint matrix are from {0,1,-1} then the Simplex Method applied to this problems leads to an integer 

optimal solution.

There are other types of practical problems where the conditions of the above theorem hold. These problems are not limited to disaster 

management problems.

K-complex is a special type of 

electroencephalogram (EEG, brain activity) 

waveform that is used in sleep stage scoring. An 

automated detection of K-complexes is a desirable 

component of sleep stage monitoring. 

This automation is difficult due to the ambiguity of 

the scoring rules, complexity and extreme size of 

data. We develop several convex optimisation

models that extract key features of EEG signals. 

These features are crucial for detecting K-

complexes. Essentially, our models are based on 

approximation of the original signals by sine 

functions with piecewise polynomial amplitudes. 

Then, we apply standard classification tools (from 

Weka) to the corresponding approximations rather 

than raw data to test the presence of K-

complexes. 

The proposed approach significantly reduces the 

dimension of the classification problem (by 

extracting essential features) and the 

computational time while the classification 

accuracy is improved. Numerical results show that 

these models are efficient for detecting K-

complexes.

Algorithm.
1: Specify the initial and final values for the frequency (𝜔0 and 𝜔𝑁) and shift (𝜑0 and 𝜑𝑁) 

2: for 𝜔= 𝜔0 : 𝜔𝑁 do

3: for 𝜑= 𝜑0 : 𝜑𝑁 do

4: Solve the corresponding optimisation problem with fixed 𝜔 and 𝜑; and record the minimal value of the objective function.

5: end for

6: end for

Approximations
W1 = Sm(x1;t) sin(𝜔t + 𝜑)

W2 = Sm(x1;t) sin(𝜔t + 𝜑) + Sm(x2;t),

where Sm(x1;t) and Sm(x2;t) are piecewise polynomial functions of degree m, whose parameters x1 and x2 are subject to 

optimisation.

W1 and W2 approximations were used in Least Squares models (LLSOM1 and LLSOM2) and uniform approximation models 

(UOM1 and UOM2) 

Test set accuracy  (K-complex detection) for raw and 

preprocessed signals
Accuracy on raw signals             Accuracy on preprocessed signals    Classifiers

LLSOM1  LLSOM2  UOM1  UOM2

47% 47% 47% 47% 47% LibSVM

N/A 74% 68% 52% 63% Logistic

74% 63% 74% 68% 53% RBF

47% 63% 84% 47% 53%             SMO

53% 63% 74% 53% 79% LazyIB1

53% 74% 79% 47% 69% LazyIB5

47% 74% 74% 47% 69% KStar

47% 74% 74% 47% 79% LWL

37% 47% 47% 47% 47% OneR

47% 74% 79% 47% 74% J48

47% 74% 79% 47% 74% J48graft

42% 74% 74% 53% 79% LMT

Comments

1. N/A means Weka failed to produce 

classification results due to memory problems.

2. From the accuracy table one can see that the 

application of classifiers to approximations 

improved the classification accuracy, but also 

these approximation were universally 

“helpful”, that is, improved the accuracy of 

almost ALL the classifiers,
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In signal processing, there is a need for constructing signal prototypes. Signal prototypes are summary curves that may replace 

the whole group of signal segments, where the signals are believed to be similar to each other. Signal prototypes may be used 

for characterising the structure of the signal segments and also for reducing the amount of information to be stored. Any signal 

group prototype should be an accurate approximation for each member of the group. On the top of this, it is desirable that the 

process of recomputing group prototypes, when new group members are available, is not computationally expensive.

We suggest a k-means and least square approximation based model. This is a convex optimisation problem. There are several 

advantages of this model. First of all, it provides an accurate approximation to the group of signals. Second, this problem can be 

obtained as a solution to a linear system and can be solved efficiently. Finally, the proposed approach allows one to compute 

prototype updates without recomputing from scratch.

Assume that there is a group of 𝑙 signals 𝑆1 𝑡 , … , 𝑆𝑙 𝑡 , whose values are measured at discrete time moments

𝑡1, … 𝑡𝑁, 𝑡𝑖 ∈ 𝑎, 𝑏 , 𝑖 = 1,… ,𝑁.
We suggest to construct the prototype as a polynomial of degree 𝑛, whose least squares deviation from each member of the 

group on [a;b] is minimal. That is, one has to solve the following optimisation problem:

minimise 𝐹 𝑥 = 𝑌 − 𝐵𝑋
where

𝑋 ∈ 𝑅𝑛+1 is the vector of decision variables (that is, polynomial parameters), 𝑌 is the vector of signals and 𝐵 is a constant 

matrix, that contains 𝑙 identical blocks.

We propose a fast and efficient algorithm for K-means signal clustering and cluster prototype recalculation when several signals

move from one cluster to another.
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