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K-means and clustering in Rn

I Step 1: Identify cluster centres.

I Step 2: Assign each point to the cluster with the nearest
centre.

I Step 3: Recompute the cluster centres.

This is a very fast clustering algorithm for clustering in Rn,
especially if the distance is just the usual Euclidean distance. In
this case, the barycentre (centroid). It is easy to recompute the
updated centres. On the top of this, this is easy to parallelise the
computations.



K-means and clustering for curves

Similar approach has been applied to curve clustering (discretised
signals). Each time moment can be treated as a separate
coordinate (providing that all the pieces of signal are defined in the
same time segment).
Assume now that the cluster centre has to be approximated by a
curve

S(A, t) =
n∑

i=0

aigi (t).

Assume for now that gi (t) are monomials.



Least squares

minimise F (X) =
N∑
i=1

l∑
j=1

(Sj(ti )− Pn(X, ti ))2, (1)

where X = (x0, . . . , xn) ∈ Rn+1, xk , k = 0, . . . , n are the
polynomial parameter and also the decision variables. Each signal
is a column vector

Sj = (Sj(t1), . . . ,Sj(tN))T , j = 1, . . . , l .



Matrix form
Problem (1) can be formulated in the following matrix form:

minimise F (X) = ‖Y − BX‖, (2)

where

X = (x0, . . . , xn) ∈ Rn+1, are the decision variables
(same as in (1));

vector

Y =


S1

S2

...
Sl

 ∈ R(n+1)l

matrix B contains repeated matrix blocks, namely,

B =


B0

B0

B0
...

B0

 ,



Matrix form (cont.)

where

B0 =


1 t1 t2

1 . . . tn1
1 t2 t2

2 . . . tn2
...

...
. . . . . .

...
1 tN t2

N . . . tnN

 .



Normal equations

This least squares problem can be solved using a system of normal
equations:

BTBX = BTY. (3)

Taking into account the structure of the system matrix in (3), the
problem can be significantly simplified:

lBT
0 B0X = BT

0

l∑
k=1

Sk . (4)

Therefore, instead of solving (3), one can solve

BT
0 B0X = BT

0

∑l
k=1 Sk

l
= BT

0 S, (5)

where S is the average of all l signals of the group (centroid).



Centre (prototype) update

Suppose that a signal group prototype has been constructed.
Assume now that we need to update our group of signals: some
new signals have to be included, while some others are to be
excluded. To update the prototype, one needs to update the
centroid and solve (5) with the updated right-hand side, while the
system matrix BT

0 B remains the same.
If only few signals are moving in and out of the group, then the
updated centroid can be calculated without recomputing from
scratch. Assume that la signals are moving in the group (signals
S1
a (t), . . .S la

a ), while lr are moving out (signals S1
r (t), . . .S lr

r ), then
the centroid can be recalculated as follows:

Snew (t) =
lSold(t) +

∑la
k=1 S

k
a (t) +

∑lr
k=1 S

k
r (t)

l − lr + la
.



Least Squares: summary

Since the same system has to be solved repeatedly with different
right-hand sides, one approach is to invert matrix BT

0 B0, which is
an (n + 1)× (n + 1) matrix. In most cases, n is much smaller than
N or l and therefore this approach is quite attractive, if we can
guarantee that matrix BT

0 B0 is invertible. In the next section we
discuss the verification of this property.



Chebyshev (uniform) approximation

Approximation theory is concerned with the approximation of a
function f , defined on a (continuous or discrete) domain Ω, by
another function s taken from a family S. At any point t ∈ Ω the
difference

d(t) , s(t)− f (t)

is called the deviation at t, and the maximal absolute deviation is
defined as

‖s − f ‖ , sup
t∈Ω
|s(t)− f (t)|.

The problem of best Chebyshev approximation is to find a function
s∗ ∈ S minimising the maximal absolute deviation over S. Such a
function s∗ is called a best approximation of f .



Chebyshev’s Theorem

The seminal result of approximation theory is Chebyshev’s
alternation theorem which can be stated as follows. Let Pn be the
set of polynomials of degree at most n with real coefficients.

Theorem
(1854) A polynomial p∗ ∈ Pn is a best approximation to a
continuous function f on an interval [a, b] if and only if there exist
n + 2 points a ≤ t1 < . . . < tn+2 ≤ b and a number σ ∈ {−1, 1}
such that

(−1)iσ(f (ti )− p∗(ti )) = ‖f − p∗‖,∀i = 1 . . . , n + 2.

The sequence of points (ti )i=1,...,n+2 is called an alternating
sequence.



Centre prototype

Supposed that a cluster consists of n signals (S1, . . . ,Sn), assigned
with respect to the shortest distance to the cluster centres. Now
we need to recompute the cluster prototype.
First of all, we need to construct two curves:

I Smax(t) = maxi=1,...,n Si (t);

I Smin(t) = mini=1,...,n Si (t).

Then the parameters of the cluster prototype are the solution of
the following optimisation problem:

mimimise max
t∈[a,b]

{Smax(t)− S(A, t), S(A, t)− Smin(t)}.

If the interval [a, b] is discretised (ti ∈ [a, b], i = 1, . . . ,N), a
solution can be obtain by solving an LP (next slide).



LP formulation

mimimise z

subject to
Smax(ti )− S(A, ti ) ≤ z , i − 1, . . . ,N,

S(A, ti )− Smin ≤ z , i − 1, . . . ,N.

We can solve this LP every time we need to update a cluster
centre, however, since only (a) few signals are moving from one
cluster to another, this procedure can be optimised.



Use the prototype from the previous iteration as an
initial solution for the next iteration

This may not be a very good idea, since this point may not be a
feasible point for the next iteration LP.
Can we still use the results obtained at the previous iteration? I
think, the answer is yes.



de la Vallée-Poussin’s procedure

de la Vallée-Poussin’s procedure has been developed for polynomial
approximation (Chebyshev metrics). Later this procedure has been
extended to the case of any Chebyshev system (not just monomials
gi (t) = t i ).
It was also noticed that this procedure (at least for the case
gi (t) = t i ) is the Simplex method applied to the corresponding LP.
Can we extend this procedure to the case when two curves are
approximated? So far, we have a lot of similarities with classical
uniform approximation.



Optimality conditions

Let
∆ = max

t∈[a,b]
{Smax(t)− S(A, t), S(A, t)− Smin(t)}.

Theorem
An approximation S(A∗, t) is a best approximation to a pair of
curves Smax and Smin on an interval [a, b] if and only if at least one
of the following conditions holds:

1. there exists a time moment tk ∈ [a, b], such that
∆ = Smax(tk)− S(A∗, tk) = S(A∗, tk)− Smin(tk)

2. there exist n + 2 points a ≤ t1 < . . . < tn+2 ≤ b and
I ∆ = Smax(tk)− S(A∗, tk) = S(A∗, tk+1)− Smin(tk+1), k =

1, . . . , n or
I ∆ = S(A∗, tk)− Smin(tk) = Smax(tk+1)− S(A∗, tk+1), k =

1, . . . , n.



Example 1: non-uniqueness of optimal solution

Let [a, b] = [0, 1], Smax(t) = 1− 0.5t and Smin(t) = 0.5t. Find a
best linear approximation for these two curves. Then S(A, t) = 0.5
is optimal. Moreover, any line

0.5 + kt, k ∈ [−0.5, 0.5]

is optimal.
There exists an optimal solution.



Optimal solution is not unique, but is there at least
one satisfying condition 2?

Same example (Example 1). No. We probably need to redefine the
notion of alternating sequence.



Stone-Weierstrass approximation theorem

Weierstrass approximation theorem states that every continuous
function defined on a closed interval [a, b] can be uniformly
approximated as closely as desired by a polynomial function.
Is not applicable anymore, if there exists t ∈ [a, b], such that
Smax(t) 6= Smin(t).



Second condition

Theorem
Assume that, after basis update, there is no point t, where
Smax(t)− Smin(t) ≥ ∆. Then de la Vallée-Poussin’s procedure can
be extended to the case of two curve approximation for Chebyshev
systems (not just monomials gi (t) = t i ).

We need to generalise three steps:

1. Best Chebyshev interpolation construction.

2. Basis update rule.

3. de la Vallée-Poussin’s theorem generalisation.

Conjecture

This procedure (at least for the case gi (t) = t i ) is the Simplex
method applied to the corresponding LP.



Second condition is not satisfied

Redefine the notion of alternating sequence: treat a point t, where
Smax(t)− Smin(t) ≥ ∆

as a “multiple” (or “double”) point (two points with “positive and
“negative” maximal deviation combined).

Conjecture

Consider a set of optimal solutions. Among these solutions, there
is at least one where, after redefining the notion of alternating
sequence with double points, condition 2 is satisfied.

Conjecture

de la Vallée-Poussin’s generalised procedure converts to an optimal
solution from the conjecture above.



A bit more on Chebyshev systems

Let the basis functions be monomial functions. Can we guarantee
that they form a Chebyshev system?

Example

Consider the system of two monomials on the segment [−1, 1]:
g1(t) = 1, g2(t) = t2, t1 6= t2,

the monomial t is “missing”. Take time-moments t1, t2 ∈ [−1, 1].
The determinant ∣∣∣∣ 1 t2

1

1 t2
2

∣∣∣∣ = 0⇔ t1 = −t2.

Therefore, these functions do not form a Chebyshev system, since
the corresponding determinant is zero when, for example,
t1 = −t2 = 1 and there is only one linear independent row.



Conditions to keep the system “Chebyshev” for
monomial basis functions

1. None of the monomials should be skipped.

2. [a, b] ⊂ (0,+∞) (1966, Karlin and Studden)



General approach (V. Malozemov, St-Petersburg
State University)

On ∈ Z = co {Zi , i = 1, . . . ,N} . (6)

Theorem
The condition (6) is equivalent to the following: there exist

Zi ∈ G , i = 1, . . . , r , Zi ∈ G̃ , i = 1, . . . , n + 1,

such that the determinants ∆i , obtained by removing the i−th
vector satisfy the following condition:

∆i 6= 0, i = 1, . . . , r , sign∆i−1 = − sign∆i , i = 2, . . . , r ,

∆i = 0, i = r + 1, . . . , n + 1.


