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Motivation & Background

Methane (CH4) and carbon dioxide (CO2) are the most prevalent
anthropogenic greenhouse gases (GHGs) in the atmosphere.

A major portion of the UNFCCC Paris Agreement is dedicated to the
reduction of GHG emissions.

While there have been substantial advances in the detection and
measurement of GHG emissions, quantifying these emissions remains
a predominantly open problem.
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Motivation & Background

Figure 1: Simplified schematic of the global CO2 cycle. Figure sourced from IPCC
(2014).
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Ginninderra Experiment

In 2015, a controlled-release experiment headed by Geoscience Australia
was conducted at the Ginninderra Controlled Release Facility near
Canberra.

Two methane release rate periods:
5.8 g min−1 between April 23 and June 7 (excluding May 26 and May
27);
5.0 g min−1 between June 8 and June 12.

Aim: To develop methodology which can recover a range of plausible
values for the emission rate irrespective of the specific type of instruments
used.
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Ginninderra Experiment

Source: Feitz et al. (2018)
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Ginninderra Experiment
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Atmospheric Transport Model
We model the dispersion of methane from the source via a Gaussian plume dispersion
model:
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where
C(xi , yi , zi ,Q,Ui ,H) is the concentration of methane at a point (xi , yi , zi);
Q is the methane release rate;
Ui is the ith wind speed;
H is the height of the gas source;
ki refers to one of six Pasquill stability classes;
σzi ,ki and σyi ,ki are the standard deviations of the time averaged plume
concentrations in the ith z and y directions respectively.

(see Turner, 1994; Wark et al., 1998, for more details)
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Atmospheric Transport Model

The Gaussian plume at height zi = 1.5 m, and ki = extremely unstable.
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Atmospheric Transport Model

It is noted that the coefficients of σyi ,ki and σzi ,ki could be off by a factor
of two or more (Wark et al., 1998). This also appears to be the case with
our categorisation scheme.
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Atmospheric Transport Model

To alleviate the need for the analyst to choose scaling factors for σyi ,ki and
σzi ,ki , we replace them in the plume model with σ̃yi ,ki and σ̃zi ,ki , such that

σ̃yi ,ki ≡ ωyσyi ,ki , and σ̃zi ,ki ≡ ωzσzi ,ki ,

where ωy and ωz are unknown, positive scaling parameters.
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Atmospheric Transport Model

The Gaussian plume dispersion model is also known to be less accurate for
low wind speeds (e.g., Turner, 1994), likely because the wind-speed Ui is
in the denominator of the scaling coefficient.

We could simply remove data at low wind speeds (e.g., Feitz et al.,
2018)??

However:

By the Central Limit Theorem and the Delta Method, we determine that,
approximately,

Var
( 1

Ui

)
∝ 1
µ4

Ui

,

where µUi is the mean wind speed over the ith time interval.
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Data model

Each measured methane concentration can be written as

Ỹi = Ci + Xi + εi ,

where
Ci is the ith plume-predicted concentration;
Xi is the sum of the ith CH4 background concentration and
instrument-specific bias; and
εi captures both the ith atmospheric transport model error and the
ith measurement error (assumed to be Gaussian but not independent).

As in Zammit-Mangion et al. (2015) we estimate Xi as the 5th percentile
of all the measurements from the instrument associated with the ith
measurement.
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Data model

Each concentration corrected for background and instrument-specific bias,
termed an enhancement and denoted by Yi , can be written as

Yi = Ỹi − Xi = Ci + εi .

To account for the transport model error portion of variability in the εi
terms, we take the following steps:

1. Introduce an auxiliary variable, mi (mi = 1, 2, . . . ,M), where M is the
total number of unique combinations of stability class and instrument type.

We consider M different precision parameters τmi , one for each
combination.
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Data Model

2. We take the influence of low wind speeds into account by taking the
precision of εi to be the appropriate τmi multiplied by Ûi , where

Ûi =
{

U4
i , 0 < Ui < 1,

1, Ui ≥ 1.

We assume the εi terms follow a Gaussian distribution, such that

(εi | mi ) ∼ Gau(0, 1/(τmi Ûi )).
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Bayesian inversion
Let

Y = (Y1,Y2, . . . ,YN)′ be the N enhancements;
τ = (τm1 , τm2 , . . . , τmM )′ be the M precision parameters; and
U = (U1,U2, . . . ,UN)′ be the N wind speeds;

and recall
H is the height of the source;
Q is the true methane release rate in g sec−1;
ωy and ωz are the standard deviation scaling parameters.

By Bayes’ Rule:

p(Q | Y,U,H) ∝ p(Q)
∫ ∞

0

∫ ∞
0

∫
RM+

p(Y | Q, τ , ωy , ωz ,U,H)

× p(τ )p(ωy )p(ωz) dτ dωy dωz ,
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Bayesian inversion

The posterior distribution is not of a known form, and so we cannot
directly compute a posteriori estimates for Q, τ , ωy , and ωz .

Instead we use a Metropolis-within-Gibbs Markov Chain Monte Carlo
(MCMC) scheme.

We take 60000 samples of each unknown parameter, discard the first
20000 samples as burn-in, and set a thinning factor of 10.

We use R to perform the inversions.
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Results
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Conclusion

We have proposed efficient and simple methodology for recovering a
range of flux estimates which is able to accept different types of
instruments.
The simplicity of the Gaussian plume model used allows for predicted
concentrations to be calculated in less than a second.

I Contributes greatly to the efficiency of the inversion;
I Flexibility to introduce uncertainty on parameters within the model

itself at little to no computational cost.

We recover all median emission-rate estimates within 36% of the true
value, while all posterior 95% credible interval have a limit within
11% of the true value.
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