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MIP/Polyhedra

Mixed Integer Program

maximize cT x
subject to Ax ≤ b

x ≥ 0
some or all xi integral
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MIP Solvers

Mixed Integer Program

maximize cT x
subject to Ax ≤ b

x ≥ 0
some or all xi integral

Many interacting components make up a MIP solver:

Presolvers
Cutting planes
Primal heuristics
Parallelisation

LP solvers
Branching rules
Node selection rules
Domain propagation

Simon Bowly Generating mixed integer programming instances



MIP Solvers

Mixed Integer Program

maximize cT x
subject to Ax ≤ b

x ≥ 0
some or all xi integral

Many interacting components make up a MIP solver:

Presolvers
Cutting planes
Primal heuristics
Parallelisation

LP solvers
Branching rules
Node selection rules
Domain propagation

Simon Bowly Generating mixed integer programming instances



Branching Strategies
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Branching Strategies

Most/Least
Infeasible Pseudocosts

Strong
Branching

Cheap Expensive
Large Tree Small Tree

Simon Bowly Generating mixed integer programming instances



Branching Strategies

Most/Least
Infeasible Pseudocosts

Strong
Branching

Cheap Expensive
Large Tree Small Tree

To conduct a branching study . . .
Disable cuts beyond the root node
Provide the optimal solution

(Linderoth and Savelsbergh, 1999)
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Evolving Instances

Genetic algorithms
Population based metaheuristic with fitness selection
Crossover is the key search operator

Previous applications to instance generation
Finding worst-case bounds for sorting algorithm performance
(Cotta and Moscato, 2003).
Exposing strengths and weaknesses of heuristics (van Hemert,
2006; Langdon and Poli, 2007).
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Evolving Instances

How can we narrow the search space?

MIP

f-LP LC

Constructor

Mapped
Search

Restrict search to feasible, bounded problems.
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Evolving Instances

Dual programs

max cT x min bT y
s.t. Ax + s = b ⇐⇒ s.t. AT y − r = c

x , s ≥ 0 y , r ≥ 0

Optimality conditions

(x , s) and (y , r) feasible to primal and dual
xi ri = 0 ∀ i
yjsj = 0 ∀ j

Construction

b = Ax + s
c = AT y − r
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Evolving Instances

Uniform row crossover:a11 . . . a1n
a21 . . . a2n
a31 . . . a3n


b11 . . . b1n

b21 . . . b2n
b31 . . . b3n


a21 . . . a2n

b21 . . . b2n
a31 . . . a3n


a11 . . . a1n

b31 . . . b3n
b11 . . . b1n


Multi-objective NSGA-II algorithm (Deb et al., 2002)

Small instances - 50 integer variables and 50 constraints

fullstrong and relpscost branching strategies in SCIP 6.0.0
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Performance Discriminating Instances
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Performance Discriminating Instances
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Properties of Generated Instances
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Properties of Generated Instances
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Takeaways

Evolutionary generation allows us to search performance space
by manipulating instances.
Small instances can be generated which expose performance
differences in fundamental components.
Branching is just one facet of MIP solver performance -
there’s more of the performance space to explore.
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