
Generating mixed integer programming instances
with challenging properties

Simon Bowly

University of Melbourne

AMSI Optimise
June 20, 2019

Simon Bowly Generating mixed integer programming instances



Outline

Algorithm

Feature
Space

Performance
Space

Give an overview of...
MIP solvers (in particular branching strategies)
Generating new instances using evolutionary algorithms
Characteristics of the generated instances

Simon Bowly Generating mixed integer programming instances



Outline

Algorithm

Feature
Space

Performance
Space

Give an overview of...
MIP solvers (in particular branching strategies)
Generating new instances using evolutionary algorithms
Characteristics of the generated instances

Simon Bowly Generating mixed integer programming instances



MIP/Polyhedra

Mixed Integer Program

maximize cT x
subject to Ax ≤ b

x ≥ 0
some or all xi integral

Simon Bowly Generating mixed integer programming instances



MIP Solvers

Mixed Integer Program

maximize cT x
subject to Ax ≤ b

x ≥ 0
some or all xi integral

Many interacting components make up a MIP solver:

Presolvers
Cutting planes
Primal heuristics
Parallelisation

LP solvers
Branching rules
Node selection rules
Domain propagation

Simon Bowly Generating mixed integer programming instances



MIP Solvers

Mixed Integer Program

maximize cT x
subject to Ax ≤ b

x ≥ 0
some or all xi integral

Many interacting components make up a MIP solver:

Presolvers
Cutting planes
Primal heuristics
Parallelisation

LP solvers
Branching rules
Node selection rules
Domain propagation

Simon Bowly Generating mixed integer programming instances



Branching Strategies

Simon Bowly Generating mixed integer programming instances



Branching Strategies

Simon Bowly Generating mixed integer programming instances



Branching Strategies

Simon Bowly Generating mixed integer programming instances



Branching Strategies

Most/Least
Infeasible Pseudocosts

Strong
Branching

Cheap Expensive
Large Tree Small Tree

Simon Bowly Generating mixed integer programming instances



Branching Strategies

Most/Least
Infeasible Pseudocosts

Strong
Branching

Cheap Expensive
Large Tree Small Tree

To conduct a branching study . . .
Disable cuts beyond the root node
Provide the optimal solution

(Linderoth and Savelsbergh, 1999)

Simon Bowly Generating mixed integer programming instances



Evolving Instances

Genetic algorithms
Population based metaheuristic with fitness selection
Crossover is the key search operator

Previous applications to instance generation
Finding worst-case bounds for sorting algorithm performance
(Cotta and Moscato, 2003).
Exposing strengths and weaknesses of heuristics (van Hemert,
2006; Langdon and Poli, 2007).

Simon Bowly Generating mixed integer programming instances



Evolving Instances

How can we narrow the search space?

MIP

f-LP LC

Constructor

Mapped
Search

Restrict search to feasible, bounded problems.

Simon Bowly Generating mixed integer programming instances



Evolving Instances

Dual programs

max cT x min bT y
s.t. Ax + s = b ⇐⇒ s.t. AT y − r = c

x , s ≥ 0 y , r ≥ 0

Optimality conditions

(x , s) and (y , r) feasible to primal and dual
xi ri = 0 ∀ i
yjsj = 0 ∀ j

Construction

b = Ax + s
c = AT y − r

Simon Bowly Generating mixed integer programming instances



Evolving Instances

Uniform row crossover:a11 . . . a1n
a21 . . . a2n
a31 . . . a3n


b11 . . . b1n

b21 . . . b2n
b31 . . . b3n


a21 . . . a2n

b21 . . . b2n
a31 . . . a3n


a11 . . . a1n

b31 . . . b3n
b11 . . . b1n


Multi-objective NSGA-II algorithm (Deb et al., 2002)

Small instances - 50 integer variables and 50 constraints

fullstrong and relpscost branching strategies in SCIP 6.0.0

Simon Bowly Generating mixed integer programming instances



Performance Discriminating Instances

10 20 30 40 50 60 70 80
FullStrong Nodes

0

200

400

600

800

1000

1200

Re
lp
sc
os
t N

od
es

Source
Random

Simon Bowly Generating mixed integer programming instances



Performance Discriminating Instances

0 20 40 60 80 100 120 140
FullStrong Nodes

0

2000

4000

6000

8000

10000

Re
lp
sc
os
t N

od
es

Source
Random
Full Strong
Relpscost

Simon Bowly Generating mixed integer programming instances



Properties of Generated Instances

Simon Bowly Generating mixed integer programming instances



Properties of Generated Instances

0.0 0.2 0.4 0.6 0.8
Polyhedral Flatness

0

50

100

150

200

250
Fu

llS
tro

ng
 N
od

es

20

40

60

80

100

120

Re
lp
sc
os
t N

od
es
 / 
Fu

llS
tro

ng
 N
od

es

Simon Bowly Generating mixed integer programming instances



Takeaways

Evolutionary generation allows us to search performance space
by manipulating instances.
Small instances can be generated which expose performance
differences in fundamental components.
Branching is just one facet of MIP solver performance -
there’s more of the performance space to explore.

Simon Bowly Generating mixed integer programming instances



References
Cotta, C. and Moscato, P. (2003). A mixed evolutionary-statistical analysis of

an algorithm’s complexity. Applied Mathematics Letters, 16(1):41–47.
Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T. (2002). A fast and elitist

multiobjective genetic algorithm: NSGA-II. IEEE transactions on
evolutionary computation, 6(2):182–197.

Langdon, W. and Poli, R. (2007). Evolving Problems to Learn About Particle
Swarm Optimizers and Other Search Algorithms. IEEE Transactions on
Evolutionary Computation, 11(5):561–578.

Linderoth, J. T. and Savelsbergh, M. W. P. (1999). A Computational Study of
Search Strategies for Mixed Integer Programming. INFORMS Journal on
Computing, 11(2):173–187.

van Hemert, J. (2006). Evolving Combinatorial Problem Instances That Are
Difficult to Solve. Evolutionary Computation, 14(4):433–462.

Simon Bowly Generating mixed integer programming instances



MATILDA

Simon Bowly Generating mixed integer programming instances



MATILDA

Simon Bowly Generating mixed integer programming instances



MATILDA

Simon Bowly Generating mixed integer programming instances


