

Optimizing Long-Term Production Plans in Underground and Open-Pit Copper Mines

AMSI 2019, Perth

Rafael Epstein UNIVERSIDAD DE CHILE

- Chile, 5,800 tons, near 40 US\$ Billions per year.
- Peru, 2,400 tons, China 1,600 tons, United States 1,200 tons, Congo 1,200 tons, Australia 950 tons.
- CODELCO stated owned company. Largest copper producer in the world.
- El Teniente (under ground) and Chuquicamata (open pit) are two huge, centenary and emblematic copper mines.

Background

Traditional approach:

- First planning of mining stage (extraction, cut-off grades, tonnage).
- Then plant stage planning: mills, concentration (mill recovery, throughput).
- Iterations to match supply and demand.

Challenges:

- Integration between mining and process stages.
- Planning multiple mines and plants at the same time.
- Additional operational constraints.
- Find the overall optimal operation policy, in the long run (20-50 years).

Problem Description

Optimization Approaches to Long Term Mine Planning

Overview of the Problem

Input:

- Mineral resources.
- Economic & external factors (geo/technological).
- Regulations/policies.

(company's objectives, risk constraints).

Output:

- Extraction plan.
- Production plan.
- Investment plan (infrastructure).

Methodology of Analysis

Optimization Approaches to Long Term Mine Planning

Methodology

- Math programming model (MIP)
 - Optimizes long term plans and large investments in open pit and underground copper mines.
- Model has two main components:
 - Extraction: ore is extracted from the mineral resource.
 - Transportation and processes: ore is processed and refined.
- Multi-commodity capacitated general network flow problem:
 - Capacitated arcs and nodes.
 - Products:
 - Copper
 - Molybdenum
 - Arsenic

FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE

Optimization Approaches to Long Term Mine Planning

Indices (sets)

- t : Planning periods
- a : Exploitation sector
- j,i : Mineral Columns
- n : Mineral Block in a column
- v
 : Process Node

Decision variables

• Extraction at:

 $Blocks \subset Columns \subset Sector$

• Flow routing

Sector

Main Variables

 $Z_{jn}^{t} = \begin{cases} 1 & \text{If block n of the column j is extracted at period t} \\ 0 & \sim \end{cases}$ $Y_{j}^{t} \ge 0 & \text{: Height extracted in column j at period t} \\ Ext_{a}^{t} \ge 0 & \text{: Tonnage extracted (per day) in sector a at period t} \end{cases}$

 $f_{\textit{vpk}}^{\,t} \geq 0$ $\ \, :$ Flow of product k between node v and node p at period t (generic)

Main Constraints

• Each block can be exploited just once through the horizon.

$$\sum_{t} Z_{jn}^{t} \leq 1 \qquad \forall j, n$$

Blocks must be extracted bottom-up.

$$Z_{j(n-1)}^{t} \geq Z_{jn}^{t} \qquad \forall j, n, t$$

• Sequence in which columns can be extracted.

$$Z_{j0}^{t} \ge Z_{i0}^{t} \qquad \forall (j,i) \in SEC(j,i)$$

Main Constraints

• Relation between blocks, columns and sectors.

$$Y_j^t = Y_j^{t-1} + \sum_{n \in N(j)} Z_{jn}^t \cdot h_{jn} \qquad Ext_a^t = \frac{\sum_{k} \sum_{j \in J(a)} \sum_{n \in N(j)} Z_{jn}^t \cdot A_{kjn}}{DP_a^t}$$

• Sector extraction capacity.

$$MIN_EXT_a^t \le Ext_a^t \le MAX_EXT_a^t \qquad \forall a, t$$

• Time availability constraint (at max extraction rate).

$$\sum_{n \in N(j)} \left(Z_{jn}^t \cdot \beta_{jn} \right) \leq DP_a^t \qquad \forall t, j \in J(a)$$

Main Constraints

• Maximum allowed horizontal extraction per sector (geotechnical constraint).

$$MIN_AREA_{a}^{t} \leq \sum_{j \in J(a)} Z_{j0}^{t} \cdot area_{j} \leq MAX_AREA_{a}^{t} \qquad \forall a, t$$

• Flow conservation and node/arc capacities.

$$f_{vk}^{t} = \sum_{p \mid (v,p) \in VP} f_{vpk}^{t}$$

$$\sum_{k \in K_{V}} f_{vpk}^{t} \leq CAP_{vp}^{t} \qquad K_{V} \text{ : products at node } \nu$$

• Maximum level of allowed contaminants.

$$\sum_{o} \sum_{k} CT_{okk'} \cdot f_{omkt} \leq MaxC_{k'} \quad \forall k' \in CONT, \forall t, \forall m$$

Regularity in heights

$$Y_j^t - Y_i^t \le \delta_{ji}^a \qquad \forall (j,i) \in JI \qquad \forall t$$

Interaction with neighborhoods

Objective Function

- Goal: To Maximize Net Present Value
 - Income: sale of products and subproducts.
 - Cost: Extraction, transportation and process at plants.
 - Investment: New projects .

max
$$O.F. = I - FC - VC$$

Optimization Approaches to Long Term Mine Planning

Mining resource:

- Expansion: exploitable "slice" of the pit.
- Bench: transversal cut, characterized by elevation and height.

- Operational constraints \Rightarrow Min/Max extraction rates
- Only resource on the surface can be exploited.
- Safety constraints.

Network Flow Formulation

Network flow formulation to extract a sequence of benches (includes safety considerations).

Network Flow Formulation

Main decision variables

 $w_{ijt} = 1$ if benches from (i+1) to j are extracted on period t

 $z_{it} \in \{0,1\}$ equals 1 if bench i is extracted in period t

• Sets

Or(a): artificial starting bench.

De(a): artificial ending bench.

Pini: artificial starting time period.

Pfin: artificial ending time period.

SU(i,t): successors of node (i,t).

AN(i,t): predecessors of node (i,t).

(1) Flow conservation:

$$\sum_{h \in AN(i,t)} w_{hit} = \sum_{j \in SU(i,t)} w_{ij(t+1)} \quad \forall i, \forall t$$

(2) Each expansion can start only one extraction sequence.

$$\sum_{j \in SU(Or(a),0)} w_{Or(a)j1} = 1 \quad \forall a$$

(3) Each expansion can end only one extraction sequence.

$$\sum_{i \in a \cup \{Or(a)\}} w_{jDe(a)Pfin} = 1 \quad \forall a$$

(4) Relation between variables.

$$z_{it} = \sum_{j \in SU(i,t)} \sum_{h < i} w_{hjt} \quad \forall i, \forall t$$

Downstream processes:

- Same as underground but with several alternatives routes.
- Different types of plants: flotation, leaching, bioleaching, low-grade sulfides.
- Stocking areas: large amount of material is stored for future use.
- Waste dumps: material without economic value.

Solving the Model

Real instances lead to hard problems (old instances).

Model	Nº Constraints	Nº Variables	0-1 Variables
Underground mine	446,521	535,639	196,386
Open pit mine	245,391	898,742	160,386

• Given the large amount of binary variables, especially those representing the extraction stage, solving the model using a mixed integer programming routine is nonviable.

Rounding Heuristic

The integrality condition is relaxed and a continuous version is solved:

$$Z_{jn}^t \in \{0,1\} \qquad \longrightarrow \qquad 0 \le Z_{jn}^t \le 1$$

• Heuristic consists of fixing binary variables based on the solution of continuous version.

Rounding Heuristic

- Logic based on:
 - Tonnage per column to remain constant.
 - Fix variables in logical order.
- This process is iterative and stops when the solution is integer.
- Since copper grade is better for lower altitude blocks, LP is reasonably good.
- A similar heuristic is used for open pit mine problems.

Applications in CODELCO

Optimization Approaches to Long Term Mine Planning

Applications in Codelco

- The model was implemented using GAMS and was solved using CPLEX.
- System implementation at CODELCO's Divisions:
 - El Teniente.
 - North Division.
 - El Salvador.
 - Andina Division.
- When using our methodology, the NPV of projects have increased up to 8%.

An Example in El Teniente Mine

	Base Plan (Reference) [MUS\$]	Optimization Model [MUS\$]	Difference [MUS\$]	
Income	6479.7	6637.6	157.9	2.4%
Costs	3279.9 3320.0		40.1	1.2%
Investments	870.9	870.9	0.0	0.0%
NPV	2328.9	2446.7	117.8	5.1%

- Optimization model utilizing same investment plan as reference case
- Model with fixed sequencing of columns
- When relaxing sequencing of columns improve NPV to 6.1%

	Model Integrated [%]	Legacy Independet [%]	Model Independent [%]	Legacy Integrated [%]
Income	1.4	0.0	1.7	1.1
Costs	-1.6	0.0	0.8	0.0
Investments	-27.3	0.0	-31.8	0.0
NPV	8.2%	0.0%	4.7%	3.2%

See: "Optimizing Long-Term Production Plans in Underground and Open-Pit Copper Mines", Operations Research, Volume 60, Number 1, 2012.

Optimizing Long-Term Production Plans in Underground and Open-Pit Copper Mines