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max
x,y

f(x, y)

s.t. (x, y) 2 X

y 2 S(x)

where S(x) = argmax
y

g(x, y)

s.t.(x, y) 2 Y
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First paper on bilevel 
optimization
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Bracken & McGill (OR,1973): First bilevel model,  
structural properties, military application. 

 Mathematical Programs with Optimization Problems

 in the Constraints

 Jerome Bracken and James T. McGill

 Institute for Defense Analyses, Arlington, Virginia

 (Received October 5, 1971)

 This paper considers a class of optimization problems characterized by con-

 straints that themselves contain optimization problems. The problems in the
 constraints can be linear programs, nonlinear programs, or two-sided optimiza-

 tion problems, including certain types of games. The paper presents theory
 dealing primarily with properties of the relevant functions that result in convex
 programming problems, and discusses interpretations of this theory. It gives

 an application with linear programs in the constraints, and discusses computa-
 tional methods for solving the problems.

 THE STANDARD mathematical program can be stated as finding a vector

 x = (xI, *, x) to
 minimize f (x) (1)

 subject to

 gi(x) > ri, (i= I, m) (2)

 where the functionsf() and gi() are real-valued, and r = (ri, *.., rm) is a specified
 vector of scalars. If f (.) is a convex function and gi ( ) is a concave function for
 i= 1, , m, then the problem given by (1) and (2) is called a convex program.

 Usually the right-hand-side vector r is considered to be a specified constant.
 More generally, this vector can be taken to be a parameterization of the mathe-
 matical program. For the class of problems treated herein, the vector r will be a
 variable used to link a nested hierarchy of mathematical programs. In general,
 the vector r will be confined to some set of values of interest, denoted by R.

 The constraint set given in (2) can be more generally defined, for any rER, as

 S (r) = Ix:gi (x, r) _O, i= 1, , . ml. (3)

 The mathematical programming problem can be restated as one of finding a vector

 x in the set S (r) that minimizes f (x). The vector r, then, parameterizes the pro-
 gram. As r varies over a set of values R, the minimal value of the objective
 function may also vary. EVANS AND GOULD [31 give conditions for which the
 variation of the minimum is a continuous function of r. ROCKAFELLAR[71 also
 considers the continuity problem for convex programs, using conjugate function
 theory. He also shows that the variation of the minimum is a convex function of r
 for certain types of parameterizations [reference 6, p. 174].

 Section I presents a formulation of mathematical programs with optimization
 problems in the constraints; Lemmas 1 and 2 there give conditions guaranteeing
 that the optimal value of the objective function of certain parameterized mathe-
 matical programs is concave. These results are applied to the constraints of the
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Adequate framework for 
Stackelberg game
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• Leader: 1st level, 

• Follower: 2nd level, 

• Leader takes follower’s optimal reaction 
into account.

 6

Heinrich von Stackelberg 
(1905 - 1946)



Applications
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•Economic game theory 

•Production planning  

•Revenue management 

• Security 

•… 



Example: a linear BP
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max
x,y

f1x+ f2y

s.t. max
y

g1x+ g2y

s.t.(x, y) 2 Y Y
g

Inducible region (IR)

f

x

y

OS



Coupling constraints
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The follower sees only  the second level constraints 

Y
g

f

x

y

X max
x,y

f1x+ f2y

s.t. (x, y) 2 X

max
y

g1x+ g2y

s.t.(x, y) 2 Y



Coupling constraints
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The follower sees only  the second level constraints 

Y
g

f

x

y

X max
x,y

f1x+ f2y

s.t. (x, y) 2 X

max
y

g1x+ g2y

s.t.(x, y) 2 Y

X \ Y = High Point Relaxation (HPR)
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Coupling constraints
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max
x,y

f1x+ f2y

s.t. (x, y) 2 X

max
y

g1x+ g2y

s.t.(x, y) 2 Y

max
x,y

f1x+ f2y

max
y

g1x+ g2y

s.t.(x, y) 2 Y \X

Infeasible BP
Feasible BP



Multiple second level optima
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max
x�0

xy

s.t. max
y

(1� x)y

s.t.0  y  1 Y

x
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f Y
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PART II: 
Linear Bilevel optimization
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Linear BP
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[ ]

}X

}Y

max
x

c1x+ d1y

s.t. A1x+A1y  b1

max
y

c2x+ d2y,

s.t.A2x+B2y  b2



0/1 Programming is a special case of BO  
(Audet et al. 1997)
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x 2 {0, 1} , v = 0 and v = argmax
w

{w : w  x,w  1� x,w � 0}

Y
x

w

x



Linear BP
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• Linear BP is strongly NP-hard (Hansen et al. 1992) 

•MILP is a special case of Linear BP 

•IR is not convex and may be disconnected.



Linear BP
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• IR is the union of faces of X∩Y 

•If Linear BP is feasible, then there exists an  optimal 
solution which  is a vertex of X∩Y. 

(Bialas & Karwan(1982), Bard(1983)). 

K-th best algorithm



Linear BP- single level 
reformulation
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max
x

c1x+ d1y

s.t. A1x+B1y  b1

max
y

d2y,

s.t. B2y  b2 �A2x (�)

max
x

c1x+ d1y

s.t. A1x+B1y  b1

B2y  b2 �A2x

�B2 = d2

� � 0

�(B2y � b2 +A2x) = 0
<latexit sha1_base64="rwS5G0defognmsjZ1xSBfVIiwVo="></latexit>



Linear BP- single level 
reformulation
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max
x

c1x+ d1y

s.t. A1x+B1y  b1

B2y +A2x  b2

�B2 = d2

� � 0

�(B2y � b2 +A2x) = 0
<latexit sha1_base64="tcCfaoFUCz3ESD8KiKp8gFqFkYY="></latexit>

max
x

c1x+ d1y

s.t. A1x+B1y  b1

B2y +A2x  b2

�B2 = d2

� � 0

�  Mdz

A2x+B2y � b2 �Mp(1� z)

z 2 {0, 1}m
<latexit sha1_base64="plCIzo8hOTNW6R7i94rBLDELxtw="></latexit>



Linear BP- single level 
reformulation

AMSI - Perth - June 2019  20

max
x

c1x+ d1y

s.t. A1x+B1y  b1

max
y

d2y,

s.t. B2y  b2 �A2x (�)

• Branch & Bound (Hansen et al.1992) 

• Branch & Cut (Audet et al. 2007) 

• Finding a valid        amounts finding a vertex  of                                                     

with largest coordinate  which is NP-hard (Kleinert et al., 2019). 

Md {λB2 = d2, λ ≥ 0}



PART III: 
Pricing problems
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Adequate framework for 
Price Setting Problem
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max
T2⇥,x,y

F (T, x, y)

s.t. min
x,y

f(T, x, y)

s.t.(x, y) 2 ⇧
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Applications
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Price Setting Problem with 
linear constraints
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max
T,x,y

Tx

s.t. TC � f

min
x,y

(c+ T )x+ dy

s.t. Ax+By � b

• ⇧ = {x, y : Ax+By � b} is bounded

• {(x, y) 2 ⇧ : x = 0} is nonempty



Example: 2 variables in 
second level
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max
T,x,y

Ty

s.t.min
x,y

c1x+ (c2 + T )y

s.t. (x, y) 2 ⇧
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M. Labbé, A. Violin

(a) (b)

Fig. 1 Graphical example of objective functions in two-dimensional case (Labbé et al. 1998). a Second
level—feasible solutions, b first level—objective function (in bold)

level problem will always have a finite solution. The non-emptiness of Π2 guarantees
the existence of a tax-free solution for the follower, which is necessary to prevent
the leader from imposing an infinite tax on his/her activities, leading to an infinite
revenue.

To illustrate the concepts introduced so far, we consider the particular case where
the second level has only two decision variables, meaning that the followers can
choose between a taxed activity and a free one, and the leader has one tax value T to
determine. The formulation is the same as described above, with decision variables
T, x, y ∈ R, parameters c1, c2 ∈ R and vectors A1, A2, b ∈ Rm . In such a case a
graphical representation of the problem can be provided and the optimal solution can
be found using a relatively straightforward procedure.

In Fig. 1a the second level objective function is represented, with the set of feasible
solutions Π . Each vertex of Π represents a potential optimal solution for the follower.

From linear programming theory, one can easily conclude that a vertex of Π is
optimal if the opposite of the objective function coefficient vector (− (c1 + T ),− c2)

belongs to the cone generated by the coefficient vectors of the active constraints at
that vertex. This allows one to determine, for each vertex, the values of T for which it
is optimal. For instance, vertex (x0, y0) is optimal for T ∈ [0, T0], (x1, y1) is optimal
for T ∈ [T0, T1], and so on. The first level objective function T y is depicted in terms
of T in Fig. 1b. One can observe that this function is discontinuous and piecewise
linear with slopes y0, y1, etc. The optimal solution in this simple example is given by
T1 and (x1, y1).

For further details on this case, we refer the interested reader to Labbé et al. (1998).

4 The network pricing problem

The network pricing problem (NPP) is a pricing problem on a network, with an author-
ity which owns a subset of arcs and imposes tolls on them, and users who travel on
the network. The authority is the leader who wants to maximize his/her revenue, and
network users are the followers who want to minimize their costs, and so will always
travel on the minimum cost path.

123

Author's personal copy
Example: 2 variables in 

second level



The first level revenue

AMSI - Perth - June 2019  27

M. Labbé, A. Violin

(a) (b)

Fig. 1 Graphical example of objective functions in two-dimensional case (Labbé et al. 1998). a Second
level—feasible solutions, b first level—objective function (in bold)

level problem will always have a finite solution. The non-emptiness of Π2 guarantees
the existence of a tax-free solution for the follower, which is necessary to prevent
the leader from imposing an infinite tax on his/her activities, leading to an infinite
revenue.

To illustrate the concepts introduced so far, we consider the particular case where
the second level has only two decision variables, meaning that the followers can
choose between a taxed activity and a free one, and the leader has one tax value T to
determine. The formulation is the same as described above, with decision variables
T, x, y ∈ R, parameters c1, c2 ∈ R and vectors A1, A2, b ∈ Rm . In such a case a
graphical representation of the problem can be provided and the optimal solution can
be found using a relatively straightforward procedure.

In Fig. 1a the second level objective function is represented, with the set of feasible
solutions Π . Each vertex of Π represents a potential optimal solution for the follower.

From linear programming theory, one can easily conclude that a vertex of Π is
optimal if the opposite of the objective function coefficient vector (− (c1 + T ),− c2)

belongs to the cone generated by the coefficient vectors of the active constraints at
that vertex. This allows one to determine, for each vertex, the values of T for which it
is optimal. For instance, vertex (x0, y0) is optimal for T ∈ [0, T0], (x1, y1) is optimal
for T ∈ [T0, T1], and so on. The first level objective function T y is depicted in terms
of T in Fig. 1b. One can observe that this function is discontinuous and piecewise
linear with slopes y0, y1, etc. The optimal solution in this simple example is given by
T1 and (x1, y1).

For further details on this case, we refer the interested reader to Labbé et al. (1998).

4 The network pricing problem

The network pricing problem (NPP) is a pricing problem on a network, with an author-
ity which owns a subset of arcs and imposes tolls on them, and users who travel on
the network. The authority is the leader who wants to maximize his/her revenue, and
network users are the followers who want to minimize their costs, and so will always
travel on the minimum cost path.
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Network pricing problem 
(Labbé et al.1998)
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• network with toll arcs (A1) and non toll arcs (A2)

• Costs ca on arcs

• Commodities (ok, dk, nk)

• Routing on cheapest (cost + toll) path

• Maximize total revenue

 28



Example
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• UB on (T1 + T2) = SPL(T = 1)� SPL(T = 0) = 22� 6 = 16

• T2,3 = 5, T4,5 = 10

1 2 3 4 5

10

9

2 2 2 0

12
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Example with negative toll 
arc
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6

2 2

0 001 2 3
T12 = 4 T23 = −2 T34 = 4

4



Network pricing problem
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max
T�0

X

a2A1

Ta

X

k2K

nkxk
a

min
x,y

X

k2K

(
X

a2A1

(ca + Ta)x
k
a +

X

a2A2

caya)

s.t.
X

a2i+

(xk
a + yka)�

X

a2i�

(xk
a + yka) = bki 8k, i

xk
a, y

k
a � 0, 8k, a
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NPP: single level reformulation

 32

max
T,x,y,�

X

k2K

nk
X

a2Ak

Tax
k
a

s.t.
X

a2i+

(xk
a + yka)�

X

a2i�

(xk
a + yka) = bki 8k, i

�k
i � �k

j  ca + Ta 8k, a 2 A1, i, j

�k
i � �k

j  ca 8k, a 2 A2, i, j
X

a2A1

(ca + Ta)x
k
a +

X

a2A2

caya = �k
ok � �k

dk 8k

xk
a, y

k
a � 0 8k, a

Ta � 0 8a 2 A1



Solution approach
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•  MILP formulation 

• Tight bound “big M” very effective 

• Branch & cut 



Product pricing

AMSI - Perth - June 2019  34

Seller Consumers

pi

nk
Rk

i

Rk
i is the reservation price of consumer k for product i



Product pricing
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•PPP is Strongly NP-hard even if reservation price is 
independent of product (Briest 2006) 

•PPP is polynomial for one product or one customer.  



PPP - bilevel formulation
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max
p�0

X

k2K

nk
X

i2I

pix
k
i

s.t. max
xk

X

i2I

(Rk
i � pi)x

k
i , k 2 K

s.t.
X

i2I

xk
i  1

xk
i � 0



PPP - single level 
formulation
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max
p�0

X

k2K

nk
X

i2I
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s.t.
X
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(Rk
i � pi)x
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i � Rk

j � pj , j 2 I, k 2 K
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i2I

(Rk
i � pi)x

k
i � 0, k 2 K
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i2I

xk
i  1

xk
i � 0



PPP: MILP formulation 
(Heilporn et al., 2010, 2011)
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•MILP formulations 

•  Convex hull for k=1 

•Branch & cut, branch & price



PPP: gap  
(Violin, 2014)
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142

the cuts separation reduces the solution time and provides a bigger gap with respect to
the first strategy, but we still have a big improvement compared to not adding (SSPI),
for both formulations. Furthermore, for Shioda et al. instances we notice that (HPDW)
formulation with (SSPI) and the second separation procedure has a smaller gap than
(HPL) formulation with (SSPI) and the first separation procedure, and a smaller (or very
similar) solution time. For complete and partial graph instances (HPDW) formulation
with (SSPI) and the second separation procedure provides a gap which is of the same
order of (HPL) formulation with (SSPI) and the first separation procedure, especially
for instances with a lot of commodities and few toll paths, and the solution time is still
smaller or very similar. For A1 instances the gap of both formulations with (SSPI) using
both separation procedures is almost the same, but (HPL) formulation is much quicker
to be solved. For this class of instances using (SSPI) provides a very small gap, less
than one percent, and in some cases we are able to solve the integer problem at the root
node.
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(c) Shioda et al.’s instances
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Figure 4.16: Performance profile graphs on the gap for the
linear relaxation for (HPL) and (HPDW) with SSPI

20 - 90 products 
20 - 90 customers
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PPP: computing time
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5.8. BRANCH-AND-CUT-AND-PRICE FRAMEWORK 175
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Figure 5.6: Performance profile graphs on solving (HP) for A1 instances,
comparing (HPL) and (HPDW) with different configurations of HP-B&C&P

“Tun 1” finds a better integer solution than “Tun 2” in 33 cases, and almost always
the heuristic finds the best solution for both configurations in a very small time (less
than one second). The heuristic also finds many of the optimal solutions for the smaller
instances.

For A1 instances we tested only the best configuration found by the tuner, as they
are all quite similar, noted as “Tun 1”. With this configuration we solve all instances
except 14 of the 91 commodities, 3 more with respect to the “Try” configuration. Also
for this class of instances the solution time is significantly decreased by “Tun 1”, in
particular by a factor of ten for instances with 91 commodities and 20 toll paths. Let
us remark that the increase in the solution time for instances with 91 commodities and
55 or 91 toll paths is due to the fact that we solve more instances (and so more difficult
ones), and we report the average. The considerations for the number of nodes, columns
and iterations, and for the time to solve each (MP) are similar as for the other class of
instances, so we do not repeat them. We just underline that for the bigger A1 instances
each (MP) is solved in average in 0.04 seconds, whilst for the bigger complete graph
instances it takes around 0.24 seconds: we already noticed this difference when testing
the column generation algorithm to solve the linear relaxation of the problem, in Section
4.10.3. Also for A1 instances the heuristic finds most of the optimal solutions.

Compare now the (HPDW) and (HPL) formulations: from the graphs of Figures 5.5
and 5.6 we notice that (HPL) solves more instances and in less time, for both classes of

AMSI - Perth - June 2019



RECAP
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Pricing problems

Second level: LP

Second level: shortest path Second level: 
“One out of N”

Bilevel bilinear optimization
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RECAP
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Pricing problems

Second level: LP

Second level: shortest path Second level: 
“One out of N”

Bilevel optimization

Single level nonlinear
reformulation
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RECAP

 43 43

Pricing problems

Second level: LP

Second level: shortest path Second level: 
“One out of N”

Bilevel optimization

Single level nonlinear
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MIP



Conclusion
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• Bilevel model: rich framework for pricing in network-based industries.

• Models: theoretically and computationally challenging.

• Need to exploit problem’s inner structure.

• Analysis of basic model: relevant and useful for attacking real applications
(http://www.expretio.com/).

• Integration of real-life features (congestion, market segmentation, dynam-
ics, randomness...).

• Investigate variants of product pricing.
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