Australian Actuaries Climate Index (AACI) AMSI Optimise

Presented by Pulkit Jain 19 June 2019

Copyright© Finity Consulting Pty Ltd

finperils

Agenda

Description of the AACI

- Purpose of index
- Components

Some thoughts on extremes

- Significance of extremes
- Link to risk

Results

- High level results
- Interesting findings

Use of the Index

Purpose of the AACI

- Objective measures of historical <u>extreme</u> weather and sea levels
- Focus on extreme weather
- Inform about climate trends in Australia
- A starting point
 - Extremes are linked to risk, but not explicit
 - Consider development of more explicit and specific risk measures in future

We are not the first to do this

Actuaries Climate Index (ACI) – North America

Individual Component Indices

Regions

Regions are based on CSIRO's 15 sub-clusters used for the "Climate Change in Australia" data, with some grouping

Key differences to North American index

Element	Description
Reference period	1981 to 2010, whereas the ACI uses 1961 to 1990. A more recent period means better quality data and a more contemporary view of changes in risk
Definition of exceedance threshold	99 th (not 90 th) A more extreme threshold provides a better link to risk
Wind	Based on the maximum wind gust each day. The ACI uses the average wind speed over the 24 hours
Sea level	Based on the maximum sea level for the month whereas the ACI uses the mean
Composite index	Based on only three component indices, not all six

Some comments on extremes

Extremes – in theory

Extremes – in reality

NSW

Link between extremes and risk

AACI - Composite index

A positive value for the index represents an increase in the relevant climate extremes since 2010 relative to the reference period of 1981 to 2010.

The value is expressed as a standardised anomaly. This means that an index of 0.5 means the component indices have increased on average by 0.5 standard deviations

Component indices

Sea Level - Australia

Summer

Winter

Copyright© Finity Consulting Pty Ltd

Recent Events

Using the Index

Problem:

How is catastrophe risk is changing?

future risk What is the risk now How has risk varied historically

forecast

Difficult to detect climate change impacts in catastrophe claims cost data

Source: Risk Frontiers analysis of normalised catastrophe costs

Finity simulation of last 100 years' claims costs. Assumed 1% pa increase in costs after 1990

Use of the Australian Actuaries Climate Index

Future risk indices

Questions?

