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Bilevel Optimization Problem
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max
x,y

f(x, y)

s.t. (x, y) 2 X

y 2 S(x)

where S(x) = argmax
y

g(x, y)

s.t.(x, y) 2 Y
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Adequate framework for 
Stackelberg game
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• Leader: 1st level, 

• Follower: 2nd level, 

• Leader takes follower’s optimal reaction 
into account.
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Heinrich von Stackelberg 
(1905 - 1946)



First paper on bilevel 
optimization
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Bracken & McGill (OR,1973): First bilevel model,  
structural properties, military application. 

 Mathematical Programs with Optimization Problems

 in the Constraints

 Jerome Bracken and James T. McGill

 Institute for Defense Analyses, Arlington, Virginia

 (Received October 5, 1971)

 This paper considers a class of optimization problems characterized by con-

 straints that themselves contain optimization problems. The problems in the
 constraints can be linear programs, nonlinear programs, or two-sided optimiza-

 tion problems, including certain types of games. The paper presents theory
 dealing primarily with properties of the relevant functions that result in convex
 programming problems, and discusses interpretations of this theory. It gives

 an application with linear programs in the constraints, and discusses computa-
 tional methods for solving the problems.

 THE STANDARD mathematical program can be stated as finding a vector

 x = (xI, *, x) to
 minimize f (x) (1)

 subject to

 gi(x) > ri, (i= I, m) (2)

 where the functionsf() and gi() are real-valued, and r = (ri, *.., rm) is a specified
 vector of scalars. If f (.) is a convex function and gi ( ) is a concave function for
 i= 1, , m, then the problem given by (1) and (2) is called a convex program.

 Usually the right-hand-side vector r is considered to be a specified constant.
 More generally, this vector can be taken to be a parameterization of the mathe-
 matical program. For the class of problems treated herein, the vector r will be a
 variable used to link a nested hierarchy of mathematical programs. In general,
 the vector r will be confined to some set of values of interest, denoted by R.

 The constraint set given in (2) can be more generally defined, for any rER, as

 S (r) = Ix:gi (x, r) _O, i= 1, , . ml. (3)

 The mathematical programming problem can be restated as one of finding a vector

 x in the set S (r) that minimizes f (x). The vector r, then, parameterizes the pro-
 gram. As r varies over a set of values R, the minimal value of the objective
 function may also vary. EVANS AND GOULD [31 give conditions for which the
 variation of the minimum is a continuous function of r. ROCKAFELLAR[71 also
 considers the continuity problem for convex programs, using conjugate function
 theory. He also shows that the variation of the minimum is a convex function of r
 for certain types of parameterizations [reference 6, p. 174].

 Section I presents a formulation of mathematical programs with optimization
 problems in the constraints; Lemmas 1 and 2 there give conditions guaranteeing
 that the optimal value of the objective function of certain parameterized mathe-
 matical programs is concave. These results are applied to the constraints of the
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Applications
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•Economic game theory 

•Production planning  

•Revenue management 

• Security 

•… 



Historical background
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1958 - 2014: the Mexican legal framework divided the petrochemical 
industry into two branches. 
•Basic petrochemical. Economic activities that transform the natural gas 

and oil in raw materials (for example, methane, ethane or naphtha); 
monopole of state-owned firms: Petroleos Mexicanos (PEMEX) and its 
subsidiaries or associated firm.  

•Secondary petrochemical. Used these supplies to make oil derivatives 
(methanol, ethylene, ammonia) for other industries;  
private and government firms compete.  

•



Problem description
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A more general situation with two vertically integrated 
industries: 

•First industry:  state-owned firm, monopole for the production 
of raw materials (supplies) for the second industry.  

•Second industry: private firms + state-owned firm compete 
to produce commodities.  

•All firms have a limited production capacity. 
•The state-owned firm must achieve a minimum income.  
     



Related literature
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Merrill and Schneider (1966): 
• idea of regulating  market by using  state-owned firms. 

Harris and Wiens (1980), Sertel (1988), Cremer, Marchand 
and Thisse (1989), De Fraja and Delbono (1989), (1990), 
Nett (1993): 
•developed the idea of regulation by participation  
•basis of the framework for mixed oligopolies.  



AMSI - Perth - June 2019  9

•The leader is the government. Its goal is to regulate the 
market: balance supply and demand for commodities.  

•The follower is a regulatory organization of the private firms. 
Its goal is to allocate the supplies to maximize the total profit 
of private firms. 

Problem description
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Problem description

State firm

Private firm

Private firm
Private firm

Raw material 
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z
x
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Assumptions
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a.Static analysis 

b.Complete information 

c.Only one important supplier for each commodity 

d.Linear production and cost 

e.Demand and prices are given  

f.Optimistic approach



Bilevel formulation
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min
x,z,r,s,y

X

i2I

(ri + si)

subject to:

P
j2J yij + xi

di
+ ri � si = 1 8i

t 
X

i2I

(pi � cGi )xi

0  xi  qAi 8i
0  zi  qBi 8i

ri � 0 8i
si � 0 8i
y 2 argmax

X

j2J

X

i2I

(pi � cEij)ŷij

subject to:
X

j2J

aij ŷij  zi 8i

X

i2I

bij ŷij  mj 8j

ŷij � 0 8i, 8j
<latexit sha1_base64="1mCbTsvDQrG235VGG2z4PDnNgb0="></latexit>



Useful observations
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• The second level problem is linear 

• Its dual feasible region does not depend on the first level 
decisions 



Solving the problem exactly
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• Reformulate problem as single level 

✴ Leader’s objective 
✴first and second level constraints 
✴ constraints of second level dual  
✴complementarity constraints of second level: non linear

Introduce binary variables 

MILP

linear



Heuristic approach
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In an optimal solution, the primal and dual solutions of the 
second level are vertices with same value

Gauss-Seidel approach: 

Restricted Master (SOME vertices of second level dual)

Second level dual

z 𝛂, 𝛃



Computational experiments
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•Reformulation (MILP) and the heuristics were 
implemented in C++ and solved with CPLEX.  

•Realistic instances use the values of the Secretary of 
Economy, the INEGI, the PEMEX and the information of 
the BVM of six Mexican petrochemical firms. 

•30 instances for each size. 
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Computational experience

Computational experience

Table: Average of the objective value and solution time for the realistic instances

Size Ref. (MILP) EPIA FGPA Hybrid Algorithm
O.V. CPU(s.) O.V. CPU(s.) O.V. CPU(s.) O.V. CPU(s.)

|I | = 10, |J| = 10 0.506 0.18 0.774 0.23 0.825 0.16 0.524 0.41
|I | = 25, |J| = 25 1.000 1.86 1.570 0.30 1.171 0.35 1.020 0.71
|I | = 25, |J| = 75 0.527 4.36 1.025 0.48 0.565 0.39 0.552 1.02
|I | = 50, |J| = 100 1.051 53.15 2.041 2.39 1.132 1.14 1.091 5.18
|I | = 75, |J| = 125 1.546 268.89 2.339 8.89 1.811 3.68 1.621 20.69
|I | = 150, |J| = 200 3.279 2754.68 4.129 61.82 5.037 12.06 3.443 112.25
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Computational experiments
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Computational experiments
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Computational experience

Computational experience

Table: Relative reduction of time

Size EPIA FGPA Hybrid Algorithm

10x10 12% 15% -48%
25x25 746% 534% 190%
25x75 1156% 1101% 445%
50x100 3418% 5418% 1176%
75x125 5269% 10696% 1499%
150x200 9210% 30206% 3324%
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Computational experiments



Conclusion
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•Bilevel optimisation: rich and adequate framework for 
market regulation  

•Computationally  challenging 

•Exploit problem structure 

•Research avenues: Nash equilibrium in second level
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