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Simultaneous Stochastic Optimization of 
Mining Complexes / Mineral Value Chains

A review of applications, solution methods and 
key findings

Amina Lamghari
Roussos Dimitrakopoulos

COSMO Stochastic Mine Planning Laboratory  - http://cosmo.mcgill.ca/

Introduction & Basics
Conventional long-term planning 

Orebody models
Major limitations

Stochastic workflow   

http://cosmo.mcgill.ca/
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• From small holes to big pits: drill for a new deposit.

Quick Introduction to Mining

• From small holes to big pits: assay the drill cores 
(“samples”) for metal content (“grade”, %, gpt, ppm)

2.0% (High)
0.7% (Medium)
0.1% (Low)
0.0% (Barren)

Quick Introduction to Mining
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• From small holes to big pits: define the mineralized 
volume (“orebody”).

2.0% (High)
0.7% (Medium)
0.1% (Low)
0.0% (Barren)

Quick Introduction to Mining

• From small holes to big pits: discretize the model into 
3D volumes (often, but not necessarily, “blocks”).

2.0% (High)
0.7% (Medium)
0.1% (Low)
0.0% (Barren)

Quick Introduction to Mining
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• From small holes to big pits: create models for the 
metal content (grades) for each of the volumes 
(blocks) in the orebody (“geostatistics”).

2.0% (High)
0.7% (Medium)
0.1% (Low)
0.0% (Barren)

Quick Introduction to Mining

Production Forecasts

1             5             10       Year

Estimated Orebody Model

Deterministic Design

Is this design the 
optimal / ‘best’?  

Can a single estimated 
model represent a mineral 

deposit?
(Grade variability, 

uncertainty)
Are we able to meet 
expected forecasts? 

Orebody Modelling Mine Design & 
Production Scheduling

Financial & 
Production Forecasts

Conventional / Deterministic Workflow
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Baker and Giacomo (1998)

Australasian Examples – Technical Risk

~80% of Failures Due to Geological Risk 

Deterministic Workflow

Mining Decisions

?

2016

2017

2018

2019

2020

Waste Dump

Oxide Mill

Oxide Leach

Autoclave

Stockpiles

Au grade

CO3 grade

SS grade

SS/CO3 ratio

Rec(Autoclave)

Rec(Leach)

Rec(Mill)

Attributes of Interest

Tonnage

Traditional production scheduling methodologies neglect uncertainty and variability! 
Source: M.Godoy, Newmont Gold, SME 2016 
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?

5 % ?

0.01 % 10 %

5 %

Estimation methods try to 
approximate some average 
grade value ...  not the actual 
one

>10.0
>5.00
>1.50
>0.60

>0.35

>0.01

Grade legend

?

Traditional Orebody Models: 
Some Limitations and Shortcomings  

Conventional models DO NOT account for uncertainty….

Estimation vs Simulation 

• Estimated Orebody Model

Quantifying Uncertainty

3 simulated scenarios of the same 
section (SMU grade)

A mature, well 
drilled and 
understood 
gold deposit

• Simulated Orebody Models.  This is a 
Monte Carlo type simulation …
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Grade-tonnage Curves – Gold Deposit

The representation of a mineral deposit and related pertinent 
attributes – estimated vs simulated - MATTERS …

Traditional Orebody Models - Limitations & Shortcomings

Simulated grades 
Estimated ( - - -, - - - ) vs simulated models (     ,      ) as inputs to …

10x10x5m blocks  

Black indicates DDH 
grade above 1.3 g/t 
and grey between 0.7 
and 1.3 g/t

Bench in a gold deposit being mined 

Estimated deposit bench, 2 methods
Real blast hole data 

Real mineral 
deposits are highly 
variable, not smooth

Traditional Orebody Models - Limitations & Shortcomings
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Black indicates DDH 
grade above 1.3 g/t 
and grey between 
0.7 and 1.3 g/t

Real blast hole data  
Simulated deposit bench from DDH        Exploration Drill Hole Data

Traditional Orebody Models - Limitations & Shortcomings

Black indicates 
DDH grade above 
1.3 g/t and grey 
between 0.7 and 1.3 
g/t

Real blast hole data  
Simulated deposit bench from DDH the     Exploration Drill Hole data

The Contribution of Geostatistical Simulations
1. Simulated models represent the actual spatial 

variability of the deposit which scheduling 
optimization should use 

2. A group of simulated models quantifies the 
uncertainty in the description of a mineral deposit 
that we need to manage suitably while scheduling

Traditional Orebody Models - Limitations & Shortcomings
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Economic Value, when optimizing, is driven by 
the economic values of the blocks mined rather 
than the products produced.

$ VALUE of a BLOCK = 

(METAL*RECOVERY*PRICE - ORE*COSTP) 

- ROCK*COSTM

Mine Planning  

Prob.

5

10

15

20

25

0 5 10 15 20 25 30 35 40 45 50
Pit Shells

N
PV

  A
$ 

 *1
06

(i
= 

8%
)

Simulated  
Realizations – Risk Analysis

Forecast  from 
Estimated  Model 

Most probable NPV is A$16.5M, 25 % less 
than the conventional (deterministic) 

estimate

0

A recall from 1998 (Gold mine in Northern Queensland)
The expected project NPV has only 2-4% probability to be 
realized - Testing the conventional plan against simulated 
scenarios…

Estimation vs Simulation: Does it Matter? 

Why this? As per the previous grade-tonnage graph, estimation  
misrepresents volumes of different grade ranges …  and more … 
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Average Grade of Mill Feed 
Ore over the Life of Mine

Mean Feed Grade 
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Feed Ore over the Life of Mine

Risk in mine design
• Why?  A major reason is the effect of smoothing  

Periods (years)

M
illi

on
 $

1             5             10       Year

Orebody Modelling Mine Design & 
Production Scheduling

Financial & 
Production Forecasts

Deterministic Workflow

Limitations/shortcomings:

1. Evaluates the $ value of the block independently of others.

2. Ignores non-linear transformations in the processing stream that 
act on the blend of materials (e.g. non-linear grade-recovery).

Average in ≠ Average out

3. Can substantially undervalue the resource by ignoring the power  
of blending.

4. Ignores uncertainty in material types, chemistry, grades, rock 
properties.
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Some Questions  

• Why should we still think that conventional mine    
planning can provide “optimal” mine plans and     
production schedules?

• Why should we still think that conventionally optimi
zed Life-of-Mine plans will materialize?

• Why should we still think that we make the best                
assessments, valuations or forecasts possible?

• Do we really provide the best possible                   
decision support information?  

Integer Programming

Objective function

Maximize total $ value  

(c1x1
1+c2x2

1+…. ) …

Subject to constraints
a1x1

1+a2x2
1+…. ³ b1

a1x1
p+a2x2

p+…. ³ bp

c4

c1 c2 c3

Estimated Orebody Model

ci =  $ value of a block i 
Xit = 1 if i mined in t, 0 
otherwise

Period 1

Period p

Deterministic Mine Planning
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The objective function now is 

Max $ value and min expected deviations

(s11x1
1+s21x2

1+….
s12x1

1+s22x2
1+…) - ( … ) …

Subject to

a11x1
1+a21x2

1+…. = b1

a12x1
1+a22x2

1+…. = b1

a1rx1
p+a2rx2

p+…. = bp

Stochastic Integer Programming (SIP)  

Simulated model 1

Simulated model 2

Simulated model r

Period 1

Period p

s41

s11 s21 s31

s41

s11 s21 s31

s41

s11 s21 s31

s4n

s1n s2n s3n

Stochastic Mine Planning (start)

Simulated Orebody Models

Sim. 1
s=1

Sim. 2
s=2

Sim. S
s=S

1                  5                10      Year

Stochastic Design & 
Production Schedule

Probabilistic Reporting  

A set of simulations 
describes geological 

uncertainty and grade 
variability

A single mine design and 
production schedule 

accounting for and managing 
risk

A more realistic  forecast of 
the NPV is obtained than with 

conventional methods

……

Stochastic        
Orebody Modelling

Stochastic Mine Design & 
Production Scheduling

Financial & Production 
Forecasts

Stochastic Workflow
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Cross-disciplinary Learning  
Other fields of Engineering:  Industry practice in 
Petroleum Reservoir Engineering has moved away from 
estimation models since the late 1980’s (stemming from 
the Stanford University related research - Prof. A. Journel)

Oil recovery 
forecasting 
(EOR) –
Production 
forecasts:            

Examples

Forecasts come 
from multiphase 
flow simulation

Estimation no longer used in reservoir forecasting

A Chevron 
example-1990

0
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reservoir 

properties

Simulated 
reservoir 

properties

Intevep 1992 

Simultaneous Stochastic 
Optimization of  

Mining Complexes 
- Mineral Value Chains

for 
Decision Support 

Extending models & 
capitalizing on synergies
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Mines

Processing streams

Waste dumps…. Tailings…   
Rehab … 

Customers & Markets … 

Spot 
Market

Simultaneous Optimization  

One SIP Formulation for the 
whole Mineral Value Chain

Mining Complexes & Mineral Value Chains

A mining complex may be seen as an integrated business starting from the 
extraction of materials to a set of sellable products delivered to various customers 

and/or spot market

Simultaneous optimization of the mining complex/value chain 

Mine A

Mine B

Mine C
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Economic Block Value, when optimizing, is 
driven by the economic values of the blocks 
mined rather than the products produced.

$ VALUE for A MINING BLOCK 
= 

(METAL*RECOVERY*PRICE - ORE*COSTP) 

- ROCK*COSTM

CHANGE CONTEXT and USE ONLY 
geological attributes:  Material Types, Grades ….

Mining Complexes & Mineral Value Chains

Mine A

Mine B

Mine C

Mining Complexes & Mineral Value Chains
A mining complex may be seen as an integrated business starting from the 

extraction of materials to a set of sellable products delivered to various customers 
and/or spot market

Simultaneous optimization focuses on the

$ value of products sold
rather than the

$ value of individual blocks

and

Generates the optimal cut-off grades



2019-07-03

16

Simultaneous Optimization 

*Tmax is the maximum plant feed tonnage

Objectives:
1. Maximize NPV
2. Satisfy SiO2:MgO blend
3. Minimize deviations from 

plant capacity target

A

B

Example
Nickel laterite mineral value chain - Blending policy optimization 

Nickel Laterite Complex – Risk Analysis of Deterministic Design

Deterministic model

Simulation 1

…
Simulation N

…

Orebody simulations quantify:
• Volumetric uncertainty
• Multi-element uncertainty

Simultaneous Optimization
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Nickel Laterite Complex – Deterministic Simultaneous Optimization

(36 days) (36 days)

Simultaneous Optimization

Nickel Laterite Complex – Risk Analysis of Deterministic Design

(36 days) (36 days)

Simultaneous Optimization
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Simultaneous Stochastic Optimization

1        10          20         30Period

Ni Simulations Nickel Laterite Mine Production Schedule

SiO2 Simulations

MgO Simulations

…

…

…
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Nickel Laterite Complex - Simultaneous Stochastic Optimization

(36 days) (36 days)

Simultaneous Stochastic Optimization
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Modelling Mining Complexes 

with Uncertainty

New mathematical models

• Adaptable two-stage stochastic integer programming model
with CAPEXs:

max
1
𝕊 &

'∈𝕋

&
*∈𝕊

&
+∈𝔸

𝑝+,' ⋅ 𝑣+,',* −
1
𝕊 &

'∈𝕋

&
*∈𝕊

&
+∈𝔸

𝑐+,'3 ⋅ 𝑢+,',* + 𝑐+,'6 ⋅ 𝑙+,',*

Attributes of interest
• Revenues from 

metal sale
• Mining, processing & 

stockpiling costs

Penalties for deviations from targets
• Mining, stockpile, processing 

capacities
• Blending constraints
• Deleterious elements

Simultaneous Stochastic Optimization Formulation

−&
'∈𝕋

&
8∈𝕂

𝑝8,' ⋅ 𝑤8,'
Change of capacities depends on:
• Quantity purchased (𝑤8,';)
• Constraint increase (𝜅+,8)
• Life of equipment (𝜆8)
• Lead time (𝜏8)CAPEX  
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• Adaptable two-stage stochastic integer programming model
with CAPEXs:

max
1
𝕊 &

'∈𝕋

&
*∈𝕊

&
+∈𝔸

𝑝+,' ⋅ 𝑣+,',* −
1
𝕊 &

'∈𝕋

&
*∈𝕊

&
+∈𝔸

𝑐+,'3 ⋅ 𝑢+,',* + 𝑐+,'6 ⋅ 𝑙+,',*

Attributes of interest
• Revenues from 

metal sale
• Mining, processing & 

stockpiling costs

Penalties for deviations from targets
• Mining, stockpile, processing 

capacities
• Blending constraints
• Deleterious elements

Simultaneous Stochastic Optimization Formulation

1. Risk reduction.
2. Risk deferral (geological risk discounting). 

0%
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Period

Plant Silica-to-Magnesia Ratio

Sulfides - Mine 2
• Metal tonnes
• Total tonnes

Modelling Mining Complexes with Risk Management

Sulfides - Mine 1
• Metal tonnes
• Total tonnes

Processing Stream A
1. Total metal
2. Total tonnes
3. Head grade
4. Recovery
5. Throughput
6. Metal recovered

Customer #1 (Contract)
1. Metal 
2. Metal value

Customer #2
1. Metal
2. Metal value

Destination policies

Processing streams

Production schedule
𝜉*

Decisions, Blending, 
GEOMET… ….. …..   
All topics related to 
materials mined move 
here

No Economic 
Values  for Mining 
Blocks Used 

Uncertainty can be 
quantified at any stage

Product Value
Cash flows are 
calculated here
using products 
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41

• Computationally prohibitive optimization models, 
IN THE PAST. 

Mine 1
400,000 blocks

400 destination decisions/y
30 years

30 simulations

• 9,000 joint scenarios
• 18,750,000 scheduling decision variables
• 62,500 destination policy variables
• 540,000 processing stream variables

Mine 2
50,000 blocks

40 destination decisions/y
10 years

15 simulations

Mine 3
250,000 blocks

100 destination decisions/y
25 years

20 simulations

Stockpile

Mill 1 Mill 2 Waste

Optimization with metaheuristics

42

Particle Swarm Optimization
Robust destination policies (𝑑A,B,')

Processing stream variables* (𝑝C,B,',*)
Capital expenditures (𝑤8,')

Simulated Annealing
Robust destination policies (𝑑A,B,')
Robust production schedule* (𝑥E,')

Capital expenditures (𝑤8,')

Optimization with Metaheuristics

But also TS, VNS, LNS, and 
other hybrids … 
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• Metaheuristics are not a cure-all …
• Which parameters have a significant impact on

the algorithm performance and how can they
be adjusted?

• Which metaheuristic will be the most efficient
for optimizing the mining complex at hand?

• Significant programming effort to adapt them to
new mining complexes

• Can we carry out the choices of parameters
and/or of (meta)heuristics in an automatic way?

Other challenges

“A hyper-heuristic is a search method or a learning
mechanism for selecting or generating heuristics to solve
computational search problems”, Burke et al. 2013

A heuristic to find the best heuristic for a given 
situation …

Hyper-heuristics
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Traditional search 
techniques

Potential solutions

Hyper-heuristics

Heuristics

Potential solutions

What is different?

• Use a score-based learning mechanism, whereby a score is 
associated with each heuristic reflecting its past performance

• Select based on these scores
• Operate on the search space of solutions

Numerical results
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• 43 instances: one mine

Overview of the benchmark datasets

L1 L2 S1 S2 S3 S4

# of instances 8 2 10 10 10 3

# of blocks [4273 ; 34,981] [26,021 ; 40,762] [4273 ; 40,762] [21,965 ; 22,720 ] 40,090 [14,118 ; 48,821 ]

# of periods [3 ; 10] [11 ; 13] [3 ; 13] [11 ; 12] 21 [6 ; 16]

# of scenarios 20 20 20 20 20 20/25

# of processors 1 1 1 2 2 2

# of stockpiles 0 0 1 2 2 2

Metal Type Cu and Au Cu and Au Cu and Au Cu Cu Cu and Au

# Binary var. [12,819 ; 314,829] [338,273 ; 448,382] [12,819 ; 448,382] [241,615 ; 272,640] 841,890 [84,708 ; 683,494]

# Continous var. [240 ; 800] [880 ; 1040] [180 ; 780] [1320 ; 1420] 2520 [900 ; 1920]

CPU CPLEX 12.2 (LR) > 4 WEEKS
Otherwise, in [0.23 min ; 11 days]

Benchmarking …
CHAPTER 2: HYPER-HEURISTICS

Figure 2.4: Classic single-point search hyper-heuristic framework

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Hyper-heuristic 

 
Selection Mechanism Acceptance Criteria 

Low-level heuristics 

Select 
Heuristic 

Apply 
Heuristic 

LLH1 LLH2 LLH3 LLHn 

Domain Barrier 

Accept/Reject 
Solution? 

Termination Criteria 

Terminate? 
Yes 

No 

Initial 
Solution 

to decide whether to accept or reject the new solution. If accepted, the new candidate

replaces the original solution. Most of the hyper-heuristics developed in this thesis are

of this nature. This approach sits firmly in the category of selection hyper-heuristics op-

erating on perturbative heuristics. The learning techniques used will vary depending

on the heuristic selection mechanism used. Table 2.1 and Table 2.2 provide definitions

for some of the common heuristic selection methods used in the remainder of the thesis,

while Table 2.3 provides definitions for a number of common move acceptance criteria.

In their initial hyper-heuristic work Cowling et al. [47] experimented with a number

of heuristic selection mechanisms, including Simple Random and Choice Function, using

two simple move acceptance criteria, accepting All Moves and Only Improving moves.

In this early work, the Choice Function selection combined with All Moves acceptance

was shown to work well when applied to a sales summit scheduling problem.

Reinforcement Learning [115] is frequently used as a heuristic selection method in selec-

tion hyper-heuristics. Nareyek [162] analysed a number of weight adaptation functions

and two simple heuristic selection methods within Reinforcement Learning for heuristic

selection. Taking the heuristic with the maximum utility value, and using simple addi-

tive (+1) and subtractive (-1) weight adaptation, were shown to be reasonable choices

when using Reinforcement Learning as a heuristic selection method in selection hyper-

heuristics for constraint satisfaction problems (CSP).

Great Deluge [65] is a metaheuristic which has shown to be a promising acceptance

criterion in hyper-heuristics. In hyper-heuristics, Bilgin et al. [14] found that a hyper-

18

35 

Obj. value 

The local optimum issue
Assume neighbour solutions are adjacent points in this Solution Space. . .

Solutions

 Fitness

No more improvement in the neighbourhood!
Note that the global optimum is also a local optimum

Solutions 

Variable Neighborhood Descent (VND) 

 
 

•  Combine different descent heuristics based on different neighborhood 
structures (Nk) to escape from local optima 

•  Terminate when no move in any of the neighborhoods improves the 
value of the objective function 

N1 

N2 
HH#

16 

A path from the source to the sink identifies a new schedule 

. 

. 

. 

Period 1 Period 2 ... Period T 

... 

... 

... 

Source 
Sink 

Represents a block and all its successors mined in the same period 
      

. 

. 

. 

. 

. 

. 

Signifies that blocks at the head of the arc are delayed to the next period.               
In their place, we will extract blocks at the tail of the arc DLS = Hybrid VND and NFA

for S1-S4
12 

Obj. value 

The local optimum issue
Assume neighbour solutions are adjacent points in this Solution Space. . .

Solutions

 Fitness

No more improvement in the neighbourhood!
Note that the global optimum is also a local optimum

Solutions 

Diversification strategy 

 
 

Restart the search from a new point (more extensive search) 
 Apply successively a sequence of shifts in order to generate the 
new initial solution 

Tabu search 

to increase the expected discounted net 

revenue and reduce constraints violations 

Diversification strategy 

to generate a new initial solution  

Initial solution 

Solution Procedure 

TS for L1 and L2
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Benchmarking …  
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An Operating 

Gold Mining Complex 

Twin Creeks Gold Mining Complex, Nevada 
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Gold Mining Complex

Autoclave

Mill

Waste Dumps

Leach
Gold

Stockpiles

Stockpiles

Pit 2

Pit 1

Extraction
Capacity

A B
Other Sources 

Blending is 
crucial!  

(SS/CO3=> acid to reduce  
carbonate concentration)

Base Case - Sources of Supply Uncertainty

Pit 1

Simulated Sulphide Stockpile

A

Stochastic simulations 

Historical data

Autoclave

B

Other Sources

Pit 2

Mill

Leach

Stochastic simulations 
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Base Case forecast P10 P50  P90
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Base Case - Gold Recovery & Risk Analysis

Base Case - DCF & Risk analysis
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Base Case - Blending: SS and Acid

• Sulfide sulfur is not a major problem
• Carbonate materials demand excessive amounts 

of acid and above legal limits
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Twin Creeks Gold Mining Complex, Nevada 
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Modified Stochastic Schedule - Vista Pit

Full View

Practical  
Stochastic

plan

Base case 
plan

Bench 0500 Bench 0360

Colours represent production years

Stochastic vs conventional schedules:
Substantially different parts of the pit are mined at the same year 

Modified Stochastic Schedule - Mega Pit

Full View

Practical 
stochastic  

plan

Base case 
plan

Bench 3400 Bench 2460

Stochastic vs conventional schedules:
Substantially different parts of the pit are mined at the same year 

Colours represent production years
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Modified (practical) Stochastic Schedule

P50 Base Case (mine’s) P10 P50 P90

Practical Stochastic Schedule

P50 Base Case (mine’s) P10 P50 P90
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• Sulfide sulfur is well controlled
• Acid requirement is below the maximum consumption 

allowed in the long-term plan (and legal regulations)

P50 Base Case (mine’s) Scenarios Limits

Practical Stochastic Schedule
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Modified (practical) Stochastic Schedule
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Practical Stochastic Schedule

What if the stochastic scheduler 
finds a 

different and larger ultimate pit?
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Stochastic schedule - More ore, larger pit 

1 extra year of ore to the 
autoclave 
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Pit A – Bench X
Conventional Stochastic

Meaning:  If this approach was applied from the    
start, ie several years earlier, there would be more 
gold produced from the same assets.

Stochastic schedule - More ore, larger pit
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ALL IMPROVEMENTS ARE DUE TO:

Managing Technical Risk from 
materials mined

and at the same time

Capitalizing on the Synergies 
between all parts of the mining complex

The End

COSMO Industry Members  

Thanks  are  in  order to our

And
Funding Agencies


